版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數(shù)學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q2.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數(shù)依次成等差數(shù)列3.是正四面體的面內一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.4.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.45.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種6.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直7.已知,,,則,,的大小關系為()A. B. C. D.8.第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是()A. B. C. D.9.在中,,,,則邊上的高為()A. B.2 C. D.10.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.11.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.12.已知函數(shù),下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關于直線對稱 D.的最大值是二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調遞增,則的最大值為________.14.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____15.在數(shù)列中,,則數(shù)列的通項公式_____.16.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.18.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.19.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為(為參數(shù)),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數(shù)列,求的值20.(12分)如圖,在四棱錐中,底面是矩形,是的中點,平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.21.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.22.(10分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。2、D【答案解析】
由折線圖逐項分析即可求解【題目詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯.故選:D【答案點睛】本題考查統(tǒng)計的知識,考查數(shù)據(jù)處理能力和應用意識,是基礎題3、B【答案解析】
設正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關系,進而求出正切值.【題目詳解】由題意設四面體的棱長為,設為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設,,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【答案點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.4、C【答案解析】
方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據(jù)拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯(lián)立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【題目詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【答案點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.5、B【答案解析】
根據(jù)條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據(jù)排列組合進行計算即可.【題目詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【答案點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.6、D【答案解析】
根據(jù)異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【題目詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【答案點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.7、D【答案解析】
構造函數(shù),利用導數(shù)求得的單調區(qū)間,由此判斷出的大小關系.【題目詳解】依題意,得,,.令,所以.所以函數(shù)在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【答案點睛】本小題主要考查利用導數(shù)求函數(shù)的單調區(qū)間,考查化歸與轉化的數(shù)學思想方法,考查對數(shù)式比較大小,屬于中檔題.8、A【答案解析】
根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【題目詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.【答案點睛】本題考查組合的應用和概率的計算,屬于基礎題.9、C【答案解析】
結合正弦定理、三角形的內角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【題目詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【答案點睛】本小題主要考查正弦定理解三角形,考查三角形的內角和定理、兩角和的正弦公式,屬于中檔題.10、D【答案解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【題目詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【答案點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.11、A【答案解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.12、D【答案解析】
通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結果.【題目詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.【答案點睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導數(shù)判斷函數(shù)最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
直接計算得到答案,根據(jù)題意得到,,解得答案.【題目詳解】,故,當時,,故,解得.故答案為:;.【答案點睛】本題考查了三角函數(shù)的周期和單調性,意在考查學生對于三角函數(shù)知識的綜合應用.14、【答案解析】
由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【題目詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【答案點睛】考查圓柱的軸截面和其體積的求法,是基礎題.15、【答案解析】
由題意可得,又,數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,對分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項公式.【題目詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,∴當為奇數(shù)時,,當為偶數(shù)時,則為奇數(shù),∴,∴數(shù)列的通項公式,故答案為:.【答案點睛】本題考查求數(shù)列的通項公式,解題關鍵是由已知遞推關系得出,從而確定數(shù)列的奇數(shù)項成等差數(shù)列,求出通項公式后再由已知求出偶數(shù)項,要注意結果是分段函數(shù)形式.16、【答案解析】
利用導數(shù)的幾何意義,由解方程即可.【題目詳解】由已知,,所以,解得.故答案為:.【答案點睛】本題考查導數(shù)的幾何意義,考查學生的基本運算能力,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【答案解析】
(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【題目詳解】(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當且僅當,即時取等號,,當且僅當即時取等號,.【答案點睛】本題考查分類討論解絕對值不等式,考查三角不等式的應用及基本不等式的應用,是一道中檔題.18、(1),;(2)見解析.【答案解析】
(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達定理求得的值,進而可得出結論.【題目詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯(lián)立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.【答案點睛】本題考查曲線的極坐標方程與普通方程之間的轉化,同時也考查了直線參數(shù)幾何意義的應用,涉及韋達定理的應用,考查計算能力,屬于中等題.19、(1)曲線的直角坐標方程為,直線的普通方程為;(2)【答案解析】
(1)由極坐標與直角坐標的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數(shù)方程代入拋物線方程中,利用韋達定理得,,可得到,根據(jù)因為,,成等比數(shù)列,列出方程,即可求解.【題目詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數(shù)方程為(為參數(shù)),消去參數(shù),得,即直線的普通方程為;(2)把的參數(shù)方程代入拋物線方程中,得,由,設方程的兩根分別為,,則,,可得,.所以,,.因為,,成等比數(shù)列,所以,即,則,解得解得或(舍),所以實數(shù).【答案點睛】本題主要考查了極坐標方程與直角坐標方程,以及參數(shù)方程與普通方程的互化,以及直線參數(shù)方程的應用,其中解答中熟記互化公式,合理應用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1).(2).【答案解析】分析:(1)直接建立空間直角坐標系,然后求出面的法向量和已知線的向量,再結合向量的夾角公式求解即可;(2)先分別得出兩個面的法向量,然后根據(jù)向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點,,,分別為軸,軸,軸建立如圖空間直角坐標系,由,,得,,,,,,則,,,設平面的一個法向量為,則,即,令,得,,∴,∴,故與平面所成角的正弦值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于《洛神賦圖》圖像敘事的空間轉譯研究
- 陜西兵馬俑遺產概述
- 2025年政府專職消防文員招錄考試筆試參考題庫選擇題50題及答案
- 2025年醫(yī)院三基知識考試試題庫及答案(共120題)
- 功能食品選擇題庫及答案
- 2025年六語下冊單元試卷及答案
- 《植入式靜脈給藥裝置護理技術》專業(yè)解讀2026
- 2025年健康課素養(yǎng)測試題及答案
- 廟會出租合同范本
- 河南醫(yī)學招聘考試題目及答案
- 2025年皮膚科年度工作總結報告
- 實施指南(2025)《HGT 6114-2022 廢酸中重金屬快速檢測方法 能量 - 色散 X 射線熒光光譜法》
- 廚師廚工考試題及答案
- 理化檢測知識培訓課件
- 2025領導干部政治理論知識網(wǎng)絡培訓題庫及參考答案
- 醫(yī)院醫(yī)療質量同質化管理辦法
- GB/T 31526-2025電子商務平臺服務質量評價
- 智能管道泄漏檢測技術可行性分析報告
- AGV小車安全培訓課件
- 客流統(tǒng)計施工方案
- T∕CSTM 00348-2021 粉末冶金高速工具鋼
評論
0/150
提交評論