版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
想要理解和研究機(jī)器學(xué)習(xí),首先你應(yīng)該要掌握Python或者R,都是和C,Java,PHP差不多的語(yǔ)言(譯:差太多了好吧).不過(guò)呢,Python和R都是比較年輕(譯:不懂,Python可并不年輕吧),而且呢更高級(jí),完全不用理解底層(譯:?),所以他倆都很容易學(xué).Python更牛逼的地方在于她能夠處理更多的問(wèn)題,比如,機(jī)器學(xué)習(xí),算法,圖像等,而不像R只能是進(jìn)行數(shù)據(jù)處理和分析.Python有著更廣泛的應(yīng)用領(lǐng)域,比如后端框架Django(譯:原文是,'Hostingwebsites:Jango'),自然語(yǔ)言處理(譯:原文是,'naturallanguageproecssing',作者太不認(rèn)真,NLP),網(wǎng)站接入等,而且Python更像C語(yǔ)言(譯:扯淡),所以她現(xiàn)在很流行.毛子的原文里面有不少錯(cuò)誤,我以自己的理解加以修正,僅供參考.語(yǔ)法文法錯(cuò)誤我就直接修改,原文作者的表達(dá)內(nèi)容錯(cuò)誤會(huì)依據(jù)原文不變,在()內(nèi)說(shuō)明.新手用Python進(jìn)行機(jī)器學(xué)習(xí)的四個(gè)步驟Python基礎(chǔ)知識(shí)學(xué)習(xí),有書(shū),Mooc,視頻.處理數(shù)據(jù),你得了解一些模塊,如:Pandas,Numpy,Matplotlib和NaturalLanguageProcessing.接著你就得爬取數(shù)據(jù),可以通過(guò)API,也可以直接到網(wǎng)站上去爬取.網(wǎng)站爬蟲(chóng)模塊:BeautifulSoup(譯:應(yīng)該是Scrapy,BS是HTML/XML解析器).我們用拿到的數(shù)據(jù)來(lái)訓(xùn)練算法.最后一步,就是要學(xué)習(xí)ML的相關(guān)算法,以及工具Scikit-learn.1.學(xué)習(xí)Python學(xué)習(xí)Python最簡(jiǎn)單粗暴的法子就是到Codecademy上去注冊(cè)個(gè)賬號(hào)來(lái)學(xué)習(xí)基礎(chǔ)知識(shí).一個(gè)被好多碼農(nóng)推薦的很經(jīng)典的網(wǎng)站LearnPythonTheHardWay.ByteofPython這篇文章是非常值得去學(xué)習(xí)的.Python社區(qū)還為新手給出了一個(gè)Python學(xué)習(xí)資源列表.O’Reilley出版的一本書(shū)ThinkPython,這里可以免費(fèi)下載.最后還有一個(gè)IntroductiontoPythonforEconometrics,StatisticsandDataAnalysis也講了好多Python的基礎(chǔ)知識(shí).2.導(dǎo)入模塊做機(jī)器學(xué)習(xí)很重要的幾個(gè)模塊和工具是NumPy,Pandas,Matplotlib和IPython.DataAnalysiswithOpenSourceTools這本書(shū)里面都有涉及這些內(nèi)容.上面提到的IntroductiontoPythonforEconometrics,StatisticsandDataAnalysis也涵蓋了這些東西.還有一本書(shū)PythonforDataAnalysis:DataWranglingwithPandas,NumPy,andIPython.下面還有一些免費(fèi)的資源:10minutestoPandasPandasformachinelearning100NumPyexercises3.爬取挖掘數(shù)據(jù)一旦你掌握了Python的基礎(chǔ),下面就要學(xué)會(huì)怎么去爬取數(shù)據(jù).也就是網(wǎng)頁(yè)爬蟲(chóng).像Twitter和LinkedIn這些網(wǎng)站都給出了APIs接口,讓我們?nèi)カ@得文本數(shù)據(jù).關(guān)于這方面下面有幾本書(shū)不錯(cuò)的書(shū):MiningtheSocialWeb(免費(fèi)),WebScrapingwithPython和WebScrapingwithPython:CollectingDatafromtheModernWeb.最后這些文本數(shù)據(jù)要由NLP技術(shù)處理成數(shù)值化數(shù)據(jù):NaturallanguageprocessingwithPython.圖像和視頻要用圖像處理CV,下面有幾個(gè)不錯(cuò)的資源:ProgrammingComputerVisionwithPython(免費(fèi)),ProgrammingComputerVisionwithPython:Toolsandalgorithmsforanalyzingimages和PracticalPythonandOpenCV.Python爬蟲(chóng)的一些例子:Mini-Tutorial:SavingTweetstoaDatabasewithPythonWebScrapingIndeedforKeyDataScienceJobSkillsCaseStudy:SentimentAnalysisOnMovieReviewsFirstWebScraperSentimentAnalysisofEmailsSimpleTextClassificationBasicSentimentAnalysiswithPythonTwittersentimentanalysisusingPythonandNLTKSecondTry:SentimentAnalysisinPythonNaturalLanguageProcessinginaKaggleCompetitionforMovieReviews4.機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)可以分為四部分:分類,聚類,回歸和降維.MachinelearninginPythonScikit-learn官網(wǎng)上有很多指南,下面列一些其它的:IntroductiontoMachineLearningwithPythonandScikit-LearnDataScienceinPythonMachineLearningforPredictingBadLoansAGenericArchitectureforTextClassificationwithMachineLearningUsingPythonandAItopredicttypesofwineAdviceforapplyingMachineLearningPredictingcustomerchurnwithscikit-learnMappingYourMusicCollectionDataScienceinPythonCaseStudy:SentimentAnalysisonMovieReviewsDocumentClusteringwithPythonFivemostpopularsimilaritymeasuresimplementationinpythonCaseStudy:SentimentAnalysisonMovieReviewsWillitPython?TextProcessinginMachineLearningHackinganepicNHLgoalcelebrationwithahuelightshowandreal-timemachinelearningVancouverRoomPricesExploringandPredictingUniversityFacultySalariesPredictingAirlineDelays書(shū):CollectionofbooksonredditBuildingMachineLearningSystemswithPythonBuildingMachineLearningSystemswithPython,2ndEditionLearningscikit-learn:MachineLearninginPythonMachineLearningAlgorithmicPerspectiveDataSciencefromScratch–FirstPrincipleswithPythonMachineLearninginPython機(jī)器學(xué)習(xí)相關(guān)的Blog和課程在線課程:Collectionoflinks.MOOC:machinelearning和DataAnalystNanodegree.
這里是一些Blog.機(jī)器學(xué)習(xí)理論TheElementsofstatisticalLearningIntroductiontoStatisticalLearning書(shū):IntroductiontomachinelearningACourseinMachineLearning.還有一些Watch15hourstheoryofmachinelearning!越看越懶得翻,著實(shí)沒(méi)什么營(yíng)養(yǎng),索性直接列出資源.下面是美國(guó)麻省理工學(xué)院(MIT)博士林達(dá)華老師(ML大牛)推薦的書(shū)單.MachineLearningPatternRecognitionandMachineLearningByChristopherM.Bishop
Anewtreatmentofclassicmachinelearningtopics,suchasclassification,regression,andtimeseriesanalysisfromaBayesianperspective.ItisamustreadforpeoplewhointendstoperformresearchonBayesianlearningandprobabilisticinference.GraphicalModels,ExponentialFamilies,andVariationalInferenceByMartinJ.WainwrightandMichaelI.Jordan
Itisacomprehensiveandbrilliantpresentationofthreecloselyrelatedsubjects:graphicalmodels,exponentialfamilies,andvariationalinference.ThisisthebestmanuscriptthatIhaveeverreadonthissubject.Stronglyrecommendedtoeveryoneinterestedingraphicalmodels.Theconnectionsbetweenvariousinferencealgorithmsandconvexoptimizationisclearlyexplained.Note:pdfversionofthisbookisfreelyavailableonline.BigData:ARevolutionThatWillTransformHowWeLive,Work,andThinkViktorMayer-Schonberger,andKennethCukier
Ashortbutinsightfulmanuscriptthatwillmotivateyoutorethinkhowweshouldfacetheexplosivegrowthofdatainthenewcentury.StatisticalPatternRecognition(2nd/3rdEdition)ByAndrewR.Webb,andKeithD.Copsey
Awellwrittenbookonpatternrecognitionforbeginners.Itcoversbasictopicsinthisfield,includingdiscriminantanalysis,decisiontrees,featureselection,andclustering--allarebasicknowledgethatresearchersinmachinelearningorpatternrecognitionshouldunderstand.LearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyondByBernhardSchlkopfandAlexanderJ.Smola
Acomprehensiveandin-depthtreatmentofkernelmethodsandsupportvectormachine.Itnotonlyclearlydevelopsthemathematicalfoundation,namelythereproducingkernelHilbertspace,butalsogivesalotofpracticalguidance(e.g.howtochooseordesignkernels.)MathematicsTopology(2ndEdition)ByJamesMunkres
Aclassicontopologyforbeginners.Itprovidesaclearintroductionofimportantconceptsingeneraltopology,suchascontinuity,connectedness,compactness,andmetricspaces,whicharethefundamentalsthatyouhavetograspedbeforeembarkingonmoreadvancedsubjectssuchasrealanalysis.IntroductoryFunctionalAnalysiswithApplicationsByErwinKreyszig
ItisaverywellwrittenbookonfunctionalanalysisthatIwouldliketorecommendtoeveryonewhowouldliketostudythissubjectforthefirsttime.Startingfromsimplenotionssuchasmetricsandnorms,thebookgraduallyunfoldsthebeautyoffunctionalanalysis,exposingimportanttopicsincludingBanachspaces,Hilbertspaces,andspectraltheorywithareasonabledepthandbreadth.Mostimportantconceptsneededinmachinelearningarecoveredbythisbook.Theexercisesareofgreathelptoreinforceyourunderstanding.RealAnalysisandProbability(CambridgeStudiesinAdvancedMathematics)ByR.M.Dudley
ThisisadensetextthatcombinesRealanalysisandmodernprobabilitytheoryin500+pages.WhatIlikeaboutthisbookisitstreatmentthatemphasizestheinterplaybetweenrealanalysisandprobabilitytheory.Alsotheexpositionofmeasuretheorybasedonsemi-ringsgivesadeepinsightofthealgebraicstructureofmeasures.ConvexOptimizationByStephenBoyd,andLievenVandenberghe
Aclassiconconvexoptimization.EveryonethatIknewwhohadreadthisbooklikedit.Thepresentationstyleisverycomfortableandinspiring,anditassumesonlyminimalprerequisiteonlinearalgebraandcalculus.Stronglyrecommendedforanybeginnersonoptimization.Note:thepdfofthisbookisfreelyavailableontheProf.Boyd'swebsite.NonlinearProgramming(2ndEdition)ByDimitriP.Bersekas
Athoroughtreatmentofnonlinearoptimization.Itcoversgradient-basedtechniques,Lagrangemultipliertheory,andconvexprogramming.PartofthisbookoverlapswithBoyd's.Overall,itgoesdeeperandtakesmoreeffortstoread.IntroductiontoSmoothManifoldsByJohnM.Lee
ThisisthebookthatIusedtolearndifferentialgeometryandLiegrouptheory.Itprovidesadetailedintroductiontobasicsofmoderndifferentialgeometry--manifolds,tangentspaces,andvectorbundles.TheconnectionsbetweenmanifoldtheoryandLiegrouptheoryisalsoclearlyexplained.ItalsocoversDeRhamCohomologyandLiealgebra,whereaudienceisinvitedtodiscoverthebeautybylinkinggeometrywithalgebra.ModernGraphTheoryByBelaBollobas
Itisamoderntreatmentofthisclassicaltheory,whichemphasizestheconnectionswithothermathematicalsubjects--forexample,randomwalksandelectricalnetworks.Ifoundsomemessagesconveyedbythisbookisenlighteningformyresearchonmachinelearningmethods.ProbabilityTheory:AComprehensiveCourse(Universitext)ByAchimKlenke
Thisisacompletecoverageofmodernprobabilitytheory--notonlyincludingtraditionaltopics,suchasmeasuretheory,independence,andconvergencetheorems,butalsointroducingtopicsthataretypicallyintextbooksonstochasticprocesses,suchasMartingales,Markovchains,andBrownianmotion,Poissonprocesses,andStochasticdifferentialequations.Itisrecommendedasthemaintextbookonprobabilitytheory.AFirstCourseinStochasticProcesses(2ndEdition)BySamuelKarlin,andHowardM.Taylor
AclassictextbookonstochasticprocesswhichIthinkareparticularlysuitableforbeginnerswithoutmuchbackgroundonmeasuretheory.Itprovidesacompletecoverageofmanyimportantstochasticprocessesinanintuitiveway.ItsdevelopmentofMarkovprocessesandrenewalprocessesisenlightening.PoissonProcesses(OxfordStudiesinProbability)ByJ.F.C.Kingman
IfyouareinterestedinBayesiannonparametrics,thisisthebookthatyoushoulddefinitelycheckout.Thismanuscriptprovidesanunparalleledintroductiontorandompointprocesses,includingPoissonandCoxprocesses,andtheirdeeptheoreticalconnectionswithcompleterandomness.ProgrammingStructureandInterpretationofComputerPrograms(2ndEdition)ByHaroldAbelson,GeraldJaySussman,andJulieSussman
Timelessclassicthatmustbereadbyallcomputersciencemajors.WhilesometopicsandtheuseofSchemeastheteachinglanguageseemsoddatfirstglance,thepresentationoffundamentalconceptssuchasabstraction,recursion,andmodularityissobeautifulandinsightfulthatyouwouldneverexperiencedelsewhere.ThinkinginC++:IntroductiontoStandardC++(2ndEdition)ByBruceEckel
Whileitiskindofold(writtenin2000),IstillrecommendthisbooktoallbeginnerstolearnC++.Thethoughtsunderlyingobject-orientedprogrammingisveryclearlyexplained.ItalsoprovidesacomprehensivecoverageofC++inawell-tunedpace.EffectiveC++:55SpecificWaystoImproveYourProgramsandDesigns(3rdEdition)ByScottMeyers
TheEffectiveC++seriesbyScottMeyersisamustforanyonewhoisseriousaboutC++programming.Theitems(rules)listedinthisbookconveystheauthor'sdeepunderstandingofbothC++itselfandmodernsoftwareengineeringprinciples.ThiseditionreflectslatestupdatesinC++development,includinggenericprogrammingtheuseofTR1library.AdvancedC++MetaprogrammingByDavideDiGennaro
Likeitorhateit,meta-programminghasplayedanincreasinglyimportantroleinmodernC++development.IfyouaskedwhatisthekeyaspectsthatdistinguishesC++fromallotherlanguages,IwouldsayitistheunparalleledgenericprogrammingcapabilitybasedonC++templates.Thisbooksummarizesthelatestadvancementofmetaprogramminginthepastdecade.IbelieveitwilltaketheplaceofLoki's"ModernC++Design"tobecomethebibleforC++meta-programming.IntroductiontoAlgorithms(2nd/3rdEdition)ByThomasH.Cormen,CharlesE.Leiserson,RonaldL.Rivest,andCliffordStein
Ifyouknownothingaboutalgorithms,youneverunderstandcomputerscience.Thisisbookisdefinitelyaclassiconalgorithmsanddatastructuresthateveryonewhoisseriousaboutcomputersciencemustread.Thiscontentsofthisbookrangesfromelementarytopicssuchasclassicsortingalgorithmsandhashtabletoadvancedtopicssuchasmaximumflow,linearprogramming,andcomputationalgeometry.Itisabookforeveryone.EverytimeIreadit,Ilearnedsomethingnew.DesignPatterns:ElementsofReusableObject-OrientedSoftwareByErichGamma,RichardHelm,RalphJohnson,andJohnVlissides
TextbooksonC++,Java,oroth
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理心理學(xué)的角色與職責(zé)
- 糖尿病規(guī)范管理培訓(xùn)課件
- 山西大地環(huán)境投資控股有限公司2025年社會(huì)招聘?jìng)淇碱}庫(kù)及一套答案詳解
- 2026年1月廣東廣州市駿景中學(xué)編外聘用制專任教師招聘1人備考題庫(kù)及答案1套
- 2026年學(xué)科知識(shí)測(cè)試心理測(cè)試題及答案一套
- 2026年新黨章知識(shí)測(cè)試測(cè)試題及答案(名校卷)
- 2026年宣化科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試模擬測(cè)試卷新版
- 2026年山西省臨汾市單招職業(yè)適應(yīng)性考試題庫(kù)及答案1套
- 2026年合肥源創(chuàng)新人才發(fā)展有限公司外包人員招聘1名備考題庫(kù)新版
- 川南幼兒師范高等??茖W(xué)校關(guān)于2025年第二批公開(kāi)考核招聘教師及專職輔導(dǎo)員的備考題庫(kù)及一套答案詳解
- 2025年中國(guó)潛孔鉆機(jī)行業(yè)細(xì)分市場(chǎng)研究及重點(diǎn)企業(yè)深度調(diào)查分析報(bào)告
- 搶劫案件偵查課件
- 食品經(jīng)營(yíng)場(chǎng)所及設(shè)施設(shè)備清洗消毒和維修保養(yǎng)制度
- DB14T2163-2020 《信息化項(xiàng)目軟件運(yùn)維費(fèi)用測(cè)算指南》
- 二氧化碳爆破施工技術(shù)方案
- 名詞單數(shù)變復(fù)數(shù)教案
- 國(guó)考題庫(kù)文件下載及答案詳解(歷年真題)
- 16《我的叔叔于勒》公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 臨時(shí)開(kāi)梯協(xié)議合同模板
- 骨科備皮課件
- 商品有機(jī)肥施肥施工方案
評(píng)論
0/150
提交評(píng)論