2022-2023學年山東省菏澤市定陶區(qū)實驗中學九年級數(shù)學上冊期末復習檢測試題含解析_第1頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學九年級數(shù)學上冊期末復習檢測試題含解析_第2頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學九年級數(shù)學上冊期末復習檢測試題含解析_第3頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學九年級數(shù)學上冊期末復習檢測試題含解析_第4頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學九年級數(shù)學上冊期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.已知2x=3y(x≠0,y≠0),則下面結論成立的是()A. B. C. D.2.己知是一元二次方程的一個根,則的值為()A.1 B.-1或2 C.-1 D.03.在平面直角坐標系中,以原點為位似中心,位似比為:,將縮小,若點坐標,,則點對應點坐標為()A., B. C.或, D.,或,4.若拋物線與坐標軸有一個交點,則的取值范圍是()A. B. C. D.5.半徑為R的圓內(nèi)接正六邊形的面積是()A.R2 B.R2 C.R2 D.R26.計算的結果等于()A.-6 B.6 C.-9 D.97.如圖,已知菱形OABC,OC在x軸上,AB交y軸于點D,點A在反比例函數(shù)上,點B在反比例函數(shù)上,且OD=2,則k的值為()A.3 B. C. D.8.如圖,⊙O的弦AB=8,M是AB的中點,且OM=3,則⊙O的半徑等于()A.8 B.4 C.10 D.59.某個幾何體的三視圖如圖所示,該幾何體是()A. B. C. D.10.下列標志圖中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.若二次函數(shù)y=mx2+2x+1的圖象與x軸有公共點,則m的取值范圍是_____.12.如圖,的半徑弦于點,連結并延長交于點,連結.若,,則的長為_______.13.已知線段是線段和的比例中項,且、的長度分別為2和8,則的長度為_________.14.拋物線向左平移2個單位,再向上平移1個單位,得到的拋物線是______.15.在中,,則的面積為_________16.如圖,有一斜坡,坡頂離地面的高度為,斜坡的傾斜角是,若,則此斜坡的為____m.17.如圖,中,,,將斜邊繞點逆時針旋轉(zhuǎn)至,連接,則的面積為_______.18.拋物線y=(x﹣2)2的頂點坐標是_____.三、解答題(共66分)19.(10分)某校九年級舉行畢業(yè)典禮,需要從九年級班的名男生名女生中和九年級班的名男生名女生中各隨機選出名主持人.(1)用樹狀圖或列表法列出所有可能情形;(2)求名主持人恰好男女的概率.20.(6分)如圖1,在和中,頂點是它們的公共頂點,,.(特例感悟)(1)當頂點與頂點重合時(如圖1),與相交于點,與相交于點,求證:四邊形是菱形;(探索論證)(2)如圖2,當時,四邊形是什么特殊四邊形?試證明你的結論;(拓展應用)(3)試探究:當?shù)扔诙嗌俣葧r,以點為頂點的四邊形是矩形?請給予證明.21.(6分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.22.(8分)經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關信息如下表;已知該商品的進價為每件30元,設銷售該商品每天的利潤為y元.時間x(天)1≤x<5050≤x≤90售價(元/件)x+4090每天銷量(件)200-2x(1)求出y與x的函數(shù)關系式(2)問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.23.(8分)如圖,在平面直角坐標系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點B的坐標為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.(1)求拋物線的解析式;(2)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE最大.①求點P的坐標和PE的最大值.②在直線PD上是否存在點M,使點M在以AB為直徑的圓上;若存在,求出點M的坐標,若不存在,請說明理由.24.(8分)已知關于的方程,其中是常數(shù).請用配方法解這個一元二次方程.25.(10分)中華人民共和國《城市道路路內(nèi)停車泊位設置規(guī)范》規(guī)定:米以上的,可在兩側設停車泊位,路幅寬米到米的,可在單側設停車泊位,路幅寬米以下的,不能設停車泊位;米,車位寬米;米.根據(jù)上述的規(guī)定,在不考慮車位間隔線和車道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車道設置同一種排列方式的小型停車泊位,請回答下列問題:(1)可在該道路兩側設置停車泊位的排列方式為;(2)如果這段道路長米,那么在道路兩側最多可以設置停車泊位個.(參考數(shù)據(jù):,)26.(10分)如圖,中,是的角平分線,,在邊上,以為直徑的半圓經(jīng)過點,交于點.(1)求證:是的切線;(2)已知,的半徑為,求圖中陰影部分的面積.(最后結果保留根號和)

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)比例的性質(zhì),把等積式寫成比例式即可得出結論.【詳解】A.由內(nèi)項之積等于外項之積,得x:3=y:2,即,故該選項不符合題意,B.由內(nèi)項之積等于外項之積,得x:3=y:2,即,故該選項不符合題意,C.由內(nèi)項之積等于外項之積,得x:y=3:2,即,故該選項不符合題意,D.由內(nèi)項之積等于外項之積,得2:y=3:x,即,故D符合題意;故選:D.【點睛】本題考查比例的性質(zhì),熟練掌握比例內(nèi)項之積等于外項之積的性質(zhì)是解題關鍵.2、C【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即把x=2代入方程求解可得m的值.【詳解】把x=2代入方程(m﹣2)x2+4x﹣m2=0得到(m﹣2)+4﹣m2=0,解得:m=﹣2或m=2.∵m﹣2≠0,∴m=﹣2.故選:C.【點睛】本題考查了一元二次方程的解的定義,解題的關鍵是理解一元二次方程解的定義,屬于基礎題型.3、C【分析】若位似比是k,則原圖形上的點,經(jīng)過位似變化得到的對應點的坐標是或.【詳解】∵以原點O為位似中心,位似比為1:2,將縮小,∴點對應點的坐標為:或.

故選:C.【點睛】本題考查了位似圖形與坐標的關系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為,那么位似圖形對應點的坐標比等于.4、A【分析】根據(jù)拋物線y=x2+(2m-1)x+m2與坐標軸有一個交點,可知拋物線只與y軸有一個交點,拋物線與x軸沒有交點,據(jù)此可解.【詳解】解:∵拋物線y=x2+(2m-1)x+m2與坐標軸有一個交點,

拋物線開口向上,m2≥0,

∴拋物線與x軸沒有交點,與y軸有1個交點,

∴(2m-1)2-4m2<0

解得故選:A.【點睛】本題考查了二次函數(shù)與一元二次方程的關系,解決本題的關鍵是掌握判別式和拋物線與x軸交點的關系.5、C【分析】連接OE、OD,由正六邊形的特點求出判斷出△ODE的形狀,作OH⊥ED,由特殊角的三角函數(shù)值求出OH的長,利用三角形的面積公式即可求出△ODE的面積,進而可得出正六邊形ABCDEF的面積.【詳解】解:如圖示,連接OE、OD,

∵六邊形ABCDEF是正六邊形,

∴∠DEF=120°,

∴∠OED=60°,

∵OE=OD=R,

∴△ODE是等邊三角形,

作OH⊥ED,則∴∴故選:C.【點睛】本題考查了正多邊形和圓的知識,理解正六邊形被半徑分成六個全等的等邊三角形是解答此題的關鍵.6、D【分析】根據(jù)有理數(shù)乘方運算的法則計算即可.【詳解】解:,故選:D.【點睛】本題考查了有理數(shù)的乘方,掌握運算法則是解題的關鍵.7、B【分析】由OD=,則點A、B的縱坐標為,得到A(,),B(,),求得AB=AO=,AD=,根據(jù)勾股定理即可得到結論.【詳解】解:∵四邊形OABC是菱形,∴AB∥OC,AB=AO,∵OD=,∴點A、B的縱坐標為,∴A(,),B(,),∴AB=,AD=,∴AO=,在Rt△AOD中,由勾股定理,得,∴,解得:;故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質(zhì),勾股定理,正確的識別圖形是解題的關鍵.8、D【詳解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故選D.9、D【解析】根據(jù)幾何體的三視圖判斷即可.【詳解】由三視圖可知:該幾何體為圓錐.故選D.【點睛】考查了由三視圖判斷幾何體的知識,解題的關鍵是具有較強的空間想象能力,難度不大.10、B【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),一個圖形經(jīng)過中心對稱能與原來的圖形重合,這個圖形叫做叫做中心對稱圖形;一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形;B、是軸對稱圖形,也是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,也不是中心對稱圖形.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.二、填空題(每小題3分,共24分)11、m≤1且m≠1.【分析】由拋物線與x軸有公共點可知△≥1,再由二次項系數(shù)不等于1,建立不等式即可求出m的取值范圍.【詳解】解:y=mx2+2x+1是二次函數(shù),∴m≠1,由題意可知:△≥1,∴4﹣4m≥1,∴m≤1∴m≤1且m≠1故答案為m≤1且m≠1.【點睛】本題考查二次函數(shù)圖像與x軸的交點問題,熟練掌握交點個數(shù)與△的關系是解題的關鍵.12、【分析】如下圖,連接EB.根據(jù)垂徑定理,設半徑為r,在Rt△AOC中,可求得r的長;△AEB∽△AOC,可得到EB的長,在Rt△ECB中,利用勾股定理得EC的長【詳解】如下圖,連接EB∵OD⊥AB,AB=8,∴AC=4設的半徑為r∵CD=2,∴OC=r-2在Rt△ACO中,,即解得:r=5,∴OC=3∵AE是的直徑,∴∠EBA=90°∴△OAC∽△EAB∴,∴EB=6在Rt△CEB中,,即解得:CE=故答案為:【點睛】本題考查垂徑定理、相似和勾股定理,需要強調(diào),垂徑定理中五個條件“知二推三”,本題知道垂直和過圓心這兩個條件13、4【分析】根據(jù)線段是線段和的比例中項,得出,將a,b的值代入即可求解.【詳解】解:∵線段是線段和的比例中項,∴即又∵、的長度分別為2和8,∴∴c=4或c=-4(舍去)故答案為:4【點睛】本題考查了比例中項的概念,掌握基本概念,列出等量關系即可解答.14、【分析】先得到拋物線的頂點坐標為(0,0),根據(jù)平移規(guī)律得到平移后拋物線的頂點坐標,則利用頂點式可得到平移后的拋物線的解析式為.【詳解】拋物線的頂點坐標為(0,0),把點(0,0)向左平移2個單位,再向上平移1個單位得到的點的坐標為(,1),

所以平移后的拋物線的解析式為.

故答案為:.【點睛】本題考查了二次函數(shù)圖象的平移:由于拋物線平移后的形狀不變,故a不變,再考慮平移后的頂點坐標,即可求出解析式.15、【分析】過點點B作BD⊥AC于D,根據(jù)鄰補角的定義求出∠BAD=60°,再根據(jù)∠BAD的正弦求出AD,然后根據(jù)三角形的面積公式列式計算即可得解.【詳解】如圖,過點B作BD⊥AC交AC延長線于點D,

∵∠BAC=120°,

∴∠BAD=180°-120°=60°,∵,∴,∴△ABC的面積.

故答案為:.【點睛】本題主要考查了運用勾股定理和銳角三角函數(shù)的概念解直角三角形問題,作出圖形更形象直觀.16、1.【分析】由三角函數(shù)定義即可得出答案.【詳解】解:∵,,∴;故答案為:1.【點睛】本題考查了解直角三角形的應用;熟練掌握三角函數(shù)定義是解題的關鍵.17、8【分析】過點B'作B'E⊥AC于點E,由題意可證△ABC≌△B'AE,可得AC=B'E=4,即可求△AB'C的面積.【詳解】解:如圖:過點B'作B'E⊥AC于點E∵旋轉(zhuǎn)∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S△AB'C=故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),利用旋轉(zhuǎn)的性質(zhì)解決問題是本題的關鍵.18、(2,0).【分析】已知條件的解析式是拋物線的頂點式,根據(jù)頂點式的坐標特點,直接寫出頂點坐標.【詳解】解:∵拋物線解析式為y=(x﹣2)2,∴二次函數(shù)圖象的頂點坐標是(2,0).故答案為(2,0).【點睛】本題的考點是二次函數(shù)的性質(zhì).方法是根據(jù)頂點式的坐標特點寫出答案.三、解答題(共66分)19、(1)答案見解析;(2)【分析】(1)首先根據(jù)題意列表,由樹形法可得所有等可能的結果;(2)由選出的是2名主持人恰好1男1女的情況,根據(jù)概率公式即可求得解.【詳解】解:(1)用樹狀圖表示如下:(A表示男生,B表示女生)由樹狀圖知共有6種等可能結果(2)由樹狀圖知:2名主持人1男1女有3種,即(A1,B2),(A1,B2)(A2,B1),所以P(恰好一男一女)=【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率所求情況數(shù)與總情況數(shù)之比.20、(1)見解析;(2)

當∠GBC=30°時,四邊形GCFD是正方形.證明見解析;(3)當∠GBC=120°時,以點,,,為頂點的四邊形CGFD是矩形.證明見解析.【分析】(1)先證明四邊形是平行四邊形,再通過證明得出,從而證明四邊形是菱形;(2)證法一:如圖,連接交于,在上取一點,使得,通過證明,,,從而證明當∠GBC=30°時,四邊形GCFD是正方形;證法二:如圖,過點G作GH⊥BC于H,通過證明OD=OC=OG=OF,GF=CD,從而證明當∠GBC=30°時,四邊形GCFD是正方形;(3)

當∠GBC=120°時,點E與點A重合,通過證明,CD=GF,,從而證明四邊形是矩形.【詳解】(1),,四邊形是平行四邊形,在和中,,,四邊形是菱形.(2)

當∠GBC=30°時,四邊形GCFD是正方形.證法一:如圖,連接交于,在上取一點,使得,,,,,,,.,,,,,,,,設,則,,

在Rt△BGK中,,解得,

,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,四邊形是正方形.證法二:如圖∵,,.又,,,.過點G作GH⊥BC于H,在Rt△BHG中,∵,∴GH=BG=+1,BH=GH=3+,∴HC=BC﹣BH=2+2-(3+)=-1,∴GC=,∴OG=OC===2,∴OD=OF=4-2=2,∴OD=OC=OG=OF,四邊形是矩形,∵GF=CD,四邊形是正方形.(3)當∠GBC=120°時,以點,,,為頂點的四邊形CGFD是矩形.

當∠GBC=120°時,點E與點A重合.,∴,.

∵四邊形ABCD和四邊形GBEF是平行四邊形,∴,,AB=CD,AB=GF,∴,CD=GF,

四邊形是平行四邊形.∵,四邊形是矩形.【點睛】本題考查了幾何的綜合應用題,掌握矩形和正方形的性質(zhì)以及判定、勾股定理、全等三角形的判定是解題的關鍵.21、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結論;(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數(shù)的性質(zhì)就可以求出結論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值22、(1)當1≤x<50時,y=﹣2x2+180x+2000,當50≤x≤90時,y=﹣120x+12000;(2)第45天時,當天銷售利潤最大,最大利潤是6050元;(3)該商品在銷售過程中,共41天每天銷售利潤不低于4800元.【解析】試題分析:(1)根據(jù)單價乘以數(shù)量,可得利潤,可得答案;(2)根據(jù)分段函數(shù)的性質(zhì),可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案;(3)根據(jù)二次函數(shù)值大于或等于4800,一次函數(shù)值大于或等于48000,可得不等式,根據(jù)解不等式組,可得答案.試題解析:(1)當1≤x<50時,y=(x+40﹣30)(200-2x)=﹣2x2+180x+2000,當50≤x≤90時,y=(90﹣30)(200-2x)=﹣120x+12000;(2)當1≤x<50時,二次函數(shù)開口向下,二次函數(shù)對稱軸為x=45,當x=45時,y最大=﹣2×452+180×45+2000=6050,當50≤x≤90時,y隨x的增大而減小,當x=50時,y最大=6000,綜上所述,該商品第45天時,當天銷售利潤最大,最大利潤是6050元;(3)當1≤x<50時,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利潤不低于4800元的天數(shù)是20≤x<50,共30天;當50≤x≤90時,y=﹣120x+12000≥4800,解得x≤60,因此利潤不低于4800元的天數(shù)是50≤x≤60,共11天,所以該商品在銷售過程中,共41天每天銷售利潤不低于4800元.23、(1)y=﹣x2﹣3x+4;(2)①,P②M(,)或(,)【解析】(1)先根據(jù)已知求點A的坐標,利用待定系數(shù)法求二次函數(shù)的解析式;(2)①根據(jù)A(﹣2,6),B(1,0),求得AB的解析式為:y=﹣2x+2,設P(a,﹣a2﹣3a+4),則E(a,﹣2a+2),利用PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣(a+)2+,根據(jù)二次函數(shù)的圖像與性質(zhì)即求解;②根據(jù)點M在以AB為直徑的圓上,得到∠AMB=90°,即AM2+BM2=AB2,求出,,AB2故可列出方程求解.【詳解】解:(1)∵B(1,0)∴OB=1,∵OC=2OB=2,∴BC=3,C(﹣2,0)Rt△ABC中,tan∠ABC=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線的解析式為:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式為:y=﹣2x+2,設P(a,﹣a2﹣3a+4),則E(a,﹣2a+2),∴PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣a2﹣a+2=﹣(a+)2+∴當a=時,PE=,此時P(,)②∵M在直線PD上,且P(,),∴+AB2=32+62=45,∵點M在以AB為直徑的圓上此時∠AMB=90°,∴AM2+BM2=AB2,∴++=45解得:,∴M(,)或(,)【點睛】此題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,勾股定理的運用,直角三角形的判定等知識.此題難度適中,解題的關鍵是注意方程思想的應用.24、詳見解析.【分析】根據(jù)配方法可得,,再將p分為三種情況即可求出答案.【詳解】,.當時,方程有兩個不相等的實數(shù)根,;當時,方程有兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論