版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.2.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.3.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.4.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.5.已知為虛數(shù)單位,復數(shù),則其共軛復數(shù)()A. B. C. D.6.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.7.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.8.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.9.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實數(shù)滿足,則的取值范圍是()A. B. C. D.10.已知,,則()A. B. C. D.11.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.12.設(shè)是虛數(shù)單位,則“復數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)()的圖象與直線相切,則______.14.平面區(qū)域的外接圓的方程是____________.15.二項式的展開式中項的系數(shù)為_____.16.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側(cè)面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數(shù)的取值范圍.18.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.19.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.20.(12分)已知,,,.(1)求的值;(2)求的值.21.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當時,求的值;利用數(shù)學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.22.(10分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.2、C【解析】
根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項可知C為正確選項,故選:C.【點睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.3、B【解析】
計算出的值,推導出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.4、C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.5、B【解析】
先根據(jù)復數(shù)的乘法計算出,然后再根據(jù)共軛復數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復數(shù).故選:B.【點睛】本題考查復數(shù)的乘法運算以及共軛復數(shù)的概念,難度較易.6、A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.7、D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當且僅當時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學生具備一定的計算能力,屬于中檔題.8、D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設(shè)四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.9、C【解析】
根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的圖象關(guān)于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.10、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.11、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.12、D【解析】
結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項.【詳解】若復數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時復數(shù),不是純虛數(shù),所以“復數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
設(shè)切點由已知可得,即可解得所求.【詳解】設(shè),因為,所以,即,又,.所以,即,.故答案為:.【點睛】本題考查導數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.14、【解析】
作出平面區(qū)域,可知平面區(qū)域為三角形,求出三角形的三個頂點坐標,設(shè)三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域為,聯(lián)立,解得,則點,同理可得點、,設(shè)的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運算求解能力,屬于中等題.15、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數(shù).【詳解】由題得,,令,解得,所以二項式的展開式中項的系數(shù)為.故答案為:15【點睛】本題主要考查了二項式定理的應(yīng)用,考查了利用通項公式去求展開式中某項的系數(shù)問題.16、【解析】
設(shè)桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設(shè)桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調(diào)遞增;令,即,解得,此函數(shù)在上單調(diào)遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應(yīng)用,注意驗證等號成立的條件,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為,極大值為.(2)【解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導,即可求得函數(shù)的極值;(2)根據(jù)題意,對目標式進行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域為,,,,可知,,解得,,可知在,時,,函數(shù)單調(diào)遞增,在時,,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導數(shù)求函數(shù)的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.18、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由題意可得,的坐標,結(jié)合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設(shè)直線,求得的坐標,再設(shè)直線,求出點的坐標,寫出的方程,聯(lián)立與,可求出的坐標,由,可得關(guān)于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標準方程為;(Ⅱ)設(shè)直線,則與直線的交點,又,設(shè)直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查運算求解能力,意在考查學生對這些知識的理解掌握水平和分析推理計算能力.19、(1);(2)見解析【解析】
(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設(shè)直線的方程為:,與橢圓聯(lián)立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設(shè),,的方程為,與橢圓方程聯(lián)立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(ⅰ)當與軸垂直時,設(shè)直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設(shè),,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關(guān)系,考查韋達定理的應(yīng)用,考查了學生的計算能力,是中檔題.20、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運算能力.21、;證明見解析.【解析】
當時,集合共有個子集,即可求出結(jié)果;分類討論,利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學教育活動策劃方案(3篇)
- 礦業(yè)立井施工方案(3篇)
- 夜場6s管理制度(3篇)
- 特產(chǎn)特色活動策劃方案(3篇)
- 改造超市施工方案(3篇)
- 2026年淄博臨淄區(qū)事業(yè)單位公開招聘綜合類崗位人員(21人)備考考試題庫及答案解析
- 2026年杭州市拱墅區(qū)人民政府武林街道辦事處公開招聘編外工作人員4人備考考試題庫及答案解析
- 2026年蕪湖市勞動保障人力資源有限公司人才儲備考試參考試題及答案解析
- 2026福建龍巖新羅區(qū)巖山中心幼兒園教師招聘1人參考考試題庫及答案解析
- 2026年福建寧德古田縣消防救援大隊政府專職消防員招聘10人備考考試題庫及答案解析
- 2021??低旸S-AT1000S超容量系列網(wǎng)絡(luò)存儲設(shè)備用戶手冊
- 水利水電工程單元工程施工質(zhì)量驗收標準第8部分:安全監(jiān)測工程
- 【政治】2025年高考真題政治-海南卷(解析版-1)
- DB50∕T 1571-2024 智能網(wǎng)聯(lián)汽車自動駕駛功能測試規(guī)范
- 低蛋白血癥患者的護理講課件
- 建設(shè)工程招投標培訓課件
- T/ZGZS 0302-2023再生工業(yè)鹽氯化鈉
- 健康骨骼課件
- 水泵電機年度維修項目方案投標文件(技術(shù)方案)
- 2024-2025學年江西省南昌市高二上學期期末聯(lián)考數(shù)學試卷(含答案)
- GB/T 6075.6-2024機械振動在非旋轉(zhuǎn)部件上測量評價機器的振動第6部分:功率大于100 kW的往復式機器
評論
0/150
提交評論