全國通用2020-2022年三年高考數(shù)學(xué)真題分項匯編專題05立體幾何選擇題填空題理_第1頁
全國通用2020-2022年三年高考數(shù)學(xué)真題分項匯編專題05立體幾何選擇題填空題理_第2頁
全國通用2020-2022年三年高考數(shù)學(xué)真題分項匯編專題05立體幾何選擇題填空題理_第3頁
全國通用2020-2022年三年高考數(shù)學(xué)真題分項匯編專題05立體幾何選擇題填空題理_第4頁
全國通用2020-2022年三年高考數(shù)學(xué)真題分項匯編專題05立體幾何選擇題填空題理_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

歡迎閱讀本文檔,希望本文檔能對您有所幫助!歡迎閱讀本文檔,希望本文檔能對您有所幫助!歡迎閱讀本文檔,希望本文檔能對您有所幫助!歡迎閱讀本文檔,希望本文檔能對您有所幫助!歡迎閱讀本文檔,希望本文檔能對您有所幫助!歡迎閱讀本文檔,希望本文檔能對您有所幫助!05立體幾何(選擇題、填空題)(理科專用)1.【2022年新高考1卷】南水北調(diào)工程緩解了北方一些地區(qū)水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔148.5m時,相應(yīng)水面的面積為140.0km2;水位為海拔157.5A.1.0×109m3 B.1.2×109【答案】C【解析】【分析】根據(jù)題意只要求出棱臺的高,即可利用棱臺的體積公式求出.【詳解】依題意可知棱臺的高為MN=157.5?148.5=9(m),所以增加的水量即為棱臺的體積V.棱臺上底面積S=140.0km2=140×∴V==3×320+60故選:C.2.【2022年新高考1卷】已知正四棱錐的側(cè)棱長為l,其各頂點都在同一球面上.若該球的體積為36π,且3≤l≤33A.18,814 B.274,814【答案】C【解析】【分析】設(shè)正四棱錐的高為?,由球的截面性質(zhì)列方程求出正四棱錐的底面邊長與高的關(guān)系,由此確定正四棱錐體積的取值范圍.【詳解】∵球的體積為36π,所以球的半徑R=3,設(shè)正四棱錐的底面邊長為2a,高為?,則l2=2a所以6?=l2所以正四棱錐的體積V=1所以V'當3≤l≤26時,V'>0,當2所以當l=26時,正四棱錐的體積V取最大值,最大值為64又l=3時,V=274,l=33所以正四棱錐的體積V的最小值為274所以該正四棱錐體積的取值范圍是274故選:C.3.【2022年新高考2卷】已知正三棱臺的高為1,上、下底面邊長分別為33和4A.100π B.128π C.144π D.192π【答案】A【解析】【分析】根據(jù)題意可求出正三棱臺上下底面所在圓面的半徑r1【詳解】設(shè)正三棱臺上下底面所在圓面的半徑r1,r2,所以2r1=33sin60°,2r2=43sin60°,即r故選:A.4.【2021年甲卷理科】2020年12月8日,中國和尼泊爾聯(lián)合公布珠穆朗瑪峰最新高程為8848.86(單位:m),三角高程測量法是珠峰高程測量方法之一.如圖是三角高程測量法的一個示意圖,現(xiàn)有A,B,C三點,且A,B,C在同一水平面上的投影滿足,.由C點測得B點的仰角為,與的差為100;由B點測得A點的仰角為,則A,C兩點到水平面的高度差約為()(

)A.346 B.373 C.446 D.473【答案】B【解析】【分析】通過做輔助線,將已知所求量轉(zhuǎn)化到一個三角形中,借助正弦定理,求得,進而得到答案.【詳解】過作,過作,故,由題,易知為等腰直角三角形,所以.所以.因為,所以在中,由正弦定理得:,而,所以所以.故選:B.【點睛】本題關(guān)鍵點在于如何正確將的長度通過作輔助線的方式轉(zhuǎn)化為.5.【2021年甲卷理科】已如A,B,C是半徑為1的球O的球面上的三個點,且,則三棱錐的體積為(

)A. B. C. D.【答案】A【解析】【分析】由題可得為等腰直角三角形,得出外接圓的半徑,則可求得到平面的距離,進而求得體積.【詳解】,為等腰直角三角形,,則外接圓的半徑為,又球的半徑為1,設(shè)到平面的距離為,則,所以.故選:A.【點睛】關(guān)鍵點睛:本題考查球內(nèi)幾何體問題,解題的關(guān)鍵是正確利用截面圓半徑、球半徑、球心到截面距離的勾股關(guān)系求解.6.【2021年新高考1卷】已知圓錐的底面半徑為,其側(cè)面展開圖為一個半圓,則該圓錐的母線長為(

)A. B. C. D.【答案】B【解析】【分析】設(shè)圓錐的母線長為,根據(jù)圓錐底面圓的周長等于扇形的弧長可求得的值,即為所求.【詳解】設(shè)圓錐的母線長為,由于圓錐底面圓的周長等于扇形的弧長,則,解得.故選:B.7.【2021年新高考2卷】正四棱臺的上?下底面的邊長分別為2,4,側(cè)棱長為2,則其體積為(

)A. B. C. D.【答案】D【解析】【分析】由四棱臺的幾何特征算出該幾何體的高及上下底面面積,再由棱臺的體積公式即可得解.【詳解】作出圖形,連接該正四棱臺上下底面的中心,如圖,因為該四棱臺上下底面邊長分別為2,4,側(cè)棱長為2,所以該棱臺的高,下底面面積,上底面面積,所以該棱臺的體積.故選:D.8.【2020年新課標1卷理科】埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長的比值為(

)A. B. C. D.【答案】C【解析】【分析】設(shè),利用得到關(guān)于的方程,解方程即可得到答案.【詳解】如圖,設(shè),則,由題意,即,化簡得,解得(負值舍去).故選:C.【點晴】本題主要考查正四棱錐的概念及其有關(guān)計算,考查學(xué)生的數(shù)學(xué)計算能力,是一道容易題.9.【2020年新課標1卷理科】已知為球的球面上的三個點,⊙為的外接圓,若⊙的面積為,,則球的表面積為(

)A. B. C. D.【答案】A【解析】【分析】由已知可得等邊的外接圓半徑,進而求出其邊長,得出的值,根據(jù)球的截面性質(zhì),求出球的半徑,即可得出結(jié)論.【詳解】設(shè)圓半徑為,球的半徑為,依題意,得,為等邊三角形,由正弦定理可得,,根據(jù)球的截面性質(zhì)平面,,球的表面積.故選:A【點睛】本題考查球的表面積,應(yīng)用球的截面性質(zhì)是解題的關(guān)鍵,考查計算求解能力,屬于基礎(chǔ)題.10.【2020年新課標2卷理科】如圖是一個多面體的三視圖,這個多面體某條棱的一個端點在正視圖中對應(yīng)的點為,在俯視圖中對應(yīng)的點為,則該端點在側(cè)視圖中對應(yīng)的點為(

)A. B. C. D.【答案】A【解析】【分析】根據(jù)三視圖,畫出多面體立體圖形,即可求得點在側(cè)視圖中對應(yīng)的點.【詳解】根據(jù)三視圖,畫出多面體立體圖形,上的點在正視圖中都對應(yīng)點M,直線上的點在俯視圖中對應(yīng)的點為N,∴在正視圖中對應(yīng),在俯視圖中對應(yīng)的點是,線段,上的所有點在側(cè)試圖中都對應(yīng),∴點在側(cè)視圖中對應(yīng)的點為.故選:A【點睛】本題主要考查了根據(jù)三視圖判斷點的位置,解題關(guān)鍵是掌握三視圖的基礎(chǔ)知識和根據(jù)三視圖能還原立體圖形的方法,考查了分析能力和空間想象,屬于基礎(chǔ)題.11.【2020年新課標2卷理科】已知△ABC是面積為的等邊三角形,且其頂點都在球O的球面上.若球O的表面積為16π,則O到平面ABC的距離為(

)A. B. C.1 D.【答案】C【解析】【分析】根據(jù)球的表面積和的面積可求得球的半徑和外接圓半徑,由球的性質(zhì)可知所求距離.【詳解】設(shè)球的半徑為,則,解得:.設(shè)外接圓半徑為,邊長為,是面積為的等邊三角形,,解得:,,球心到平面的距離.故選:C.【點睛】本題考查球的相關(guān)問題的求解,涉及到球的表面積公式和三角形面積公式的應(yīng)用;解題關(guān)鍵是明確球的性質(zhì),即球心和三角形外接圓圓心的連線必垂直于三角形所在平面.12.【2020年新課標3卷理科】下圖為某幾何體的三視圖,則該幾何體的表面積是(

)A.6+4 B.4+4 C.6+2 D.4+2【答案】C【解析】【分析】根據(jù)三視圖特征,在正方體中截取出符合題意的立體圖形,求出每個面的面積,即可求得其表面積.【詳解】根據(jù)三視圖特征,在正方體中截取出符合題意的立體圖形根據(jù)立體圖形可得:根據(jù)勾股定理可得:是邊長為的等邊三角形根據(jù)三角形面積公式可得:該幾何體的表面積是:.故選:C.【點睛】本題主要考查了根據(jù)三視圖求立體圖形的表面積問題,解題關(guān)鍵是掌握根據(jù)三視圖畫出立體圖形,考查了分析能力和空間想象能力,屬于基礎(chǔ)題.13.【2020年新高考1卷(山東卷)】日晷是中國古代用來測定時間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測定時間.把地球看成一個球(球心記為O),地球上一點A的緯度是指OA與地球赤道所在平面所成角,點A處的水平面是指過點A且與OA垂直的平面.在點A處放置一個日晷,若晷面與赤道所在平面平行,點A處的緯度為北緯40°,則晷針與點A處的水平面所成角為(

)A.20° B.40°C.50° D.90°【答案】B【解析】【分析】畫出過球心和晷針所確定的平面截地球和晷面的截面圖,根據(jù)面面平行的性質(zhì)定理和線面垂直的定義判定有關(guān)截線的關(guān)系,根據(jù)點處的緯度,計算出晷針與點處的水平面所成角.【詳解】畫出截面圖如下圖所示,其中是赤道所在平面的截線;是點處的水平面的截線,依題意可知;是晷針所在直線.是晷面的截線,依題意依題意,晷面和赤道平面平行,晷針與晷面垂直,根據(jù)平面平行的性質(zhì)定理可得可知、根據(jù)線面垂直的定義可得..由于,所以,由于,所以,也即晷針與點處的水平面所成角為.故選:B【點睛】本小題主要考查中國古代數(shù)學(xué)文化,考查球體有關(guān)計算,涉及平面平行,線面垂直的性質(zhì),屬于中檔題.14.【2022年新高考1卷】已知正方體ABCD?AA.直線BC1與DA1所成的角為90° B.直線BC.直線BC1與平面BB1D1D所成的角為45°【答案】ABD【解析】【分析】數(shù)形結(jié)合,依次對所給選項進行判斷即可.【詳解】如圖,連接B1C、BC1,因為DA1//B1因為四邊形BB1C1C為正方形,則B1C⊥B連接A1C,因為A1B1⊥平面BB因為B1C⊥BC1,A1又A1C?平面A1連接A1C1,設(shè)A因為BB1⊥平面A1B1C因為C1O⊥B1D1,所以∠C1BO為直線B設(shè)正方體棱長為1,則C1O=22,所以,直線BC1與平面BB因為C1C⊥平面ABCD,所以∠C1BC為直線B故選:ABD15.【2022年新高考2卷】如圖,四邊形ABCD為正方形,ED⊥平面ABCD,F(xiàn)B∥ED,AB=ED=2FB,記三棱錐E?ACD,F(xiàn)?ABC,F(xiàn)?ACE的體積分別為V1A.V3=2VC.V3=V【答案】CD【解析】【分析】直接由體積公式計算V1,V2,連接BD交AC于點M,連接EM,FM,由【詳解】設(shè)AB=ED=2FB=2a,因為ED⊥平面ABCD,F(xiàn)B∥ED,則V1V2=13?FB?S△ABC=13?a?又ED⊥平面ABCD,AC?平面ABCD,則ED⊥AC,又ED∩BD=D,ED,BD?平面BDEF,則AC⊥平面BDEF,又BM=DM=12BD=2a,過F作FG⊥DE于G則EM=2a2+EM2+FM2=EF則V3=VA?EFM+VC?EFM故選:CD.16.【2021年新高考1卷】在正三棱柱中,,點滿足,其中,,則(

)A.當時,的周長為定值B.當時,三棱錐的體積為定值C.當時,有且僅有一個點,使得D.當時,有且僅有一個點,使得平面【答案】BD【解析】【分析】對于A,由于等價向量關(guān)系,聯(lián)系到一個三角形內(nèi),進而確定點的坐標;對于B,將點的運動軌跡考慮到一個三角形內(nèi),確定路線,進而考慮體積是否為定值;對于C,考慮借助向量的平移將點軌跡確定,進而考慮建立合適的直角坐標系來求解點的個數(shù);對于D,考慮借助向量的平移將點軌跡確定,進而考慮建立合適的直角坐標系來求解點的個數(shù).【詳解】易知,點在矩形內(nèi)部(含邊界).對于A,當時,,即此時線段,周長不是定值,故A錯誤;對于B,當時,,故此時點軌跡為線段,而,平面,則有到平面的距離為定值,所以其體積為定值,故B正確.對于C,當時,,取,中點分別為,,則,所以點軌跡為線段,不妨建系解決,建立空間直角坐標系如圖,,,,則,,,所以或.故均滿足,故C錯誤;對于D,當時,,取,中點為.,所以點軌跡為線段.設(shè),因為,所以,,所以,此時與重合,故D正確.故選:BD.【點睛】本題主要考查向量的等價替換,關(guān)鍵之處在于所求點的坐標放在三角形內(nèi).17.【2021年新高考2卷】如圖,在正方體中,O為底面的中心,P為所在棱的中點,M,N為正方體的頂點.則滿足的是(

)A. B.C. D.【答案】BC【解析】【分析】根據(jù)線面垂直的判定定理可得BC的正誤,平移直線構(gòu)造所考慮的線線角后可判斷AD的正誤.【詳解】設(shè)正方體的棱長為,對于A,如圖(1)所示,連接,則,故(或其補角)為異面直線所成的角,在直角三角形,,,故,故不成立,故A錯誤.對于B,如圖(2)所示,取的中點為,連接,,則,,由正方體可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正確.對于C,如圖(3),連接,則,由B的判斷可得,故,故C正確.對于D,如圖(4),取的中點,的中點,連接,則,因為,故,故,所以或其補角為異面直線所成的角,因為正方體的棱長為2,故,,,,故不是直角,故不垂直,故D錯誤.故選:BC.18.【2020年新課標3卷理科】已知圓錐的底面半徑為1,母線長為3,則該圓錐內(nèi)半徑最大的球的體積為_________.【答案】【解析】【分析】將原問題轉(zhuǎn)化為求解圓錐內(nèi)切球的問題,然后結(jié)合截面確定其半徑即可確定體積的值.【詳解】易知半徑最大球為圓錐的內(nèi)切球,球與圓錐內(nèi)切時的軸截面如圖所示,其中,且點M為BC邊上的中點,設(shè)內(nèi)切圓的圓心為,由于,故,設(shè)內(nèi)切圓半徑為,則:,解得:,其體積:.故答案為:.【點睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論