版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知無(wú)窮等比數(shù)列的公比為2,且,則()A. B. C. D.2.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.63.一個(gè)空間幾何體的正視圖是長(zhǎng)為4,寬為的長(zhǎng)方形,側(cè)視圖是邊長(zhǎng)為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.如圖所示,矩形的對(duì)角線相交于點(diǎn),為的中點(diǎn),若,則等于().A. B. C. D.5.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知函數(shù)(,,),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.8.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.20179.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.410.大衍數(shù)列,米源于我國(guó)古代文獻(xiàn)《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國(guó)傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.11.在中,為中點(diǎn),且,若,則()A. B. C. D.12.已知集合,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某部門全部員工參加一項(xiàng)社會(huì)公益活動(dòng),按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.14.已知點(diǎn)是拋物線的焦點(diǎn),,是該拋物線上的兩點(diǎn),若,則線段中點(diǎn)的縱坐標(biāo)為__________.15.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.16.若實(shí)數(shù),滿足,則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.18.(12分)在中,內(nèi)角所對(duì)的邊分別為,已知,且.(I)求角的大?。唬á颍┤?,求面積的取值范圍.19.(12分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)如圖,空間幾何體中,是邊長(zhǎng)為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.22.(10分)如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長(zhǎng)度;(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問(wèn)點(diǎn)P在何處時(shí),α+β最小?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
依據(jù)無(wú)窮等比數(shù)列求和公式,先求出首項(xiàng),再求出,利用無(wú)窮等比數(shù)列求和公式即可求出結(jié)果。【詳解】因?yàn)闊o(wú)窮等比數(shù)列的公比為2,則無(wú)窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c(diǎn)睛】本題主要考查無(wú)窮等比數(shù)列求和公式的應(yīng)用。2.C【解析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)?,所以,則.故選C.3.B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點(diǎn)睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.4.A【解析】
由平面向量基本定理,化簡(jiǎn)得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡(jiǎn),所以,即,故選A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡(jiǎn)得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.5.B【解析】
求出復(fù)數(shù),得出其對(duì)應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對(duì)應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.6.B【解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識(shí)得到的解析式,然后分別找出和的等價(jià)條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于中檔題.7.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8.B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問(wèn)題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.9.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。10.B【解析】
直接代入檢驗(yàn),排除其中三個(gè)即可.【詳解】由題意,排除D,,排除A,C.同時(shí)B也滿足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解.11.B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.12.D【解析】
先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D【點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.60【解析】
根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點(diǎn)睛】本題考查了分層抽樣的定義與簡(jiǎn)單應(yīng)用,古典概型概率的簡(jiǎn)單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.14.2【解析】
運(yùn)用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)距離等于到準(zhǔn)線距離,然后求解結(jié)果.【詳解】拋物線的標(biāo)準(zhǔn)方程為:,則拋物線的準(zhǔn)線方程為,設(shè),,則,所以,則線段中點(diǎn)的縱坐標(biāo)為.故答案為:【點(diǎn)睛】本題考查了拋物線的定義,由拋物線定義將點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線距離,需要熟練掌握定義,并能靈活運(yùn)用,本題較為基礎(chǔ).15.0.08【解析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點(diǎn)睛】本題主要考查數(shù)據(jù)的方差,明確方差的計(jì)算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).16.【解析】
由約束條件先畫出可行域,然后求目標(biāo)函數(shù)的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當(dāng)平行線經(jīng)過(guò)點(diǎn)時(shí)取到最小值,由可得,此時(shí),所以的最小值為.故答案為.【點(diǎn)睛】本題考查了線性規(guī)劃的知識(shí),解題的一般步驟為先畫出可行域,然后改寫目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個(gè)法向量,由得,取,則因?yàn)槠矫娴囊粋€(gè)法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個(gè)法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.18.(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因?yàn)?,所以,,,或,或,因?yàn)椋运?;(Ⅱ)由余弦定理得:,所以,所以,?dāng)且僅當(dāng)取等號(hào),又因?yàn)椋?,所以【點(diǎn)睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.19.(1)證明見詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點(diǎn)O,連接、,可得,可求出.在中,由勾股定理可證得,結(jié)合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由點(diǎn)F在線段上,設(shè),得出的坐標(biāo),進(jìn)而求出平面的一個(gè)法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結(jié)合為平面的一個(gè)法向量,用向量法即可求出與的夾角,結(jié)合圖形,寫出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點(diǎn),連接,,,平面平面平面..平面平面(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè).則設(shè)平面的一個(gè)法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個(gè)法向量,二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問(wèn)題,屬于中檔題.20.(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.【點(diǎn)睛】本題第一問(wèn)考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問(wèn)考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.21.(1)證明見解析(2)【解析】
(1)分別取,的中點(diǎn),,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立空間直角坐標(biāo)系,分別計(jì)算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計(jì)算即可.【詳解】(1)證明:分別取,的中點(diǎn),,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立如圖所示空間直角坐標(biāo)系由面,所以面的法向量可取,點(diǎn),點(diǎn),點(diǎn),,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點(diǎn)睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學(xué)生的運(yùn)算能力,在做此類題時(shí),一定要準(zhǔn)確寫出點(diǎn)的坐標(biāo).22.(1);(2)當(dāng)BP為cm時(shí),α+β取得最小值.【解析】
(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,根據(jù)得到,解得答案.(2)設(shè)B
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025四川涼山州德昌縣人力資源和社會(huì)保障局考核招聘“三支一扶”人員 為鄉(xiāng)鎮(zhèn)事業(yè)單位人員4人備考題庫(kù)及答案1套
- 2025山東省體育局所屬事業(yè)單位招聘63人參考題庫(kù)附答案
- 2025年廣東省人民醫(yī)院南海醫(yī)院招聘事業(yè)單位聘用制(編制)工作人員1人(第二批)參考題庫(kù)及答案1套
- 2025年西安長(zhǎng)安萬(wàn)科城小學(xué)教師招聘?jìng)淇碱}庫(kù)及答案1套
- 電力調(diào)度與控制手冊(cè)
- 新能源行業(yè)技術(shù)規(guī)范手冊(cè)
- 汽車銷售顧問(wèn)客戶溝通技巧手冊(cè)(標(biāo)準(zhǔn)版)
- 2024年電子科技大學(xué)成都學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 2024年石家莊鐵路職業(yè)技術(shù)學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 2024年紹興理工學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 學(xué)前教育-幼兒園戶外建構(gòu)游戲安全與對(duì)策的研究論文
- 門急診病歷質(zhì)控檢查評(píng)分標(biāo)準(zhǔn)
- 04S519小型排水構(gòu)筑物1
- 光纖激光打標(biāo)機(jī)說(shuō)明書
- 勞動(dòng)者個(gè)人職業(yè)健康監(jiān)護(hù)檔案
- 《兩角和與差的正弦、余弦、正切公式》示范公開課教學(xué)PPT課件【高中數(shù)學(xué)人教版】
- 治理現(xiàn)代化下的高校合同管理
- 境外宗教滲透與云南邊疆民族地區(qū)意識(shí)形態(tài)安全研究
- GB/T 28920-2012教學(xué)實(shí)驗(yàn)用危險(xiǎn)固體、液體的使用與保管
- GB/T 26389-2011衡器產(chǎn)品型號(hào)編制方法
- GB/T 16588-2009帶傳動(dòng)工業(yè)用多楔帶與帶輪PH、PJ、PK、PL和PM型:尺寸
評(píng)論
0/150
提交評(píng)論