下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復(fù)數(shù)().A. B. C. D.2.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.403.已知集合,則()A. B. C. D.4.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.5.若向量,則()A.30 B.31 C.32 D.336.設(shè),,則的值為()A. B.C. D.7.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.函數(shù)與的圖象上存在關(guān)于直線對稱的點,則的取值范圍是()A. B. C. D.9.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.10.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到11.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.12.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則最小值為__________.14.已知實數(shù),滿足則的取值范圍是______.15.某校高二(4)班統(tǒng)計全班同學(xué)中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學(xué)用餐平均用時為____分鐘.16.若隨機變量的分布列如表所示,則______,______.-101三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標為(1)求橢圓的方程;(2)點為內(nèi)一點,為坐標原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.18.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.19.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.20.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實數(shù)解、、(),求證:.21.(12分)在中,角的對邊分別為,且.(1)求角的大?。唬?)若函數(shù)圖象的一條對稱軸方程為且,求的值.22.(10分)a,b,c分別為△ABC內(nèi)角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.
2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】試題分析:,故選A.【考點】復(fù)數(shù)運算【名師點睛】復(fù)數(shù)代數(shù)形式的四則運算的法則是進行復(fù)數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化.2.A【答案解析】
化簡得到,再利用二項式定理展開得到答案.【題目詳解】展開式中的項為.故選:【答案點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.3.B【答案解析】
計算,再計算交集得到答案【題目詳解】,表示偶數(shù),故.故選:.【答案點睛】本題考查了集合的交集,意在考查學(xué)生的計算能力.4.B【答案解析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【題目詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【答案點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.5.C【答案解析】
先求出,再與相乘即可求出答案.【題目詳解】因為,所以.故選:C.【答案點睛】本題考查了平面向量的坐標運算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.6.D【答案解析】
利用倍角公式求得的值,利用誘導(dǎo)公式求得的值,利用同角三角函數(shù)關(guān)系式求得的值,進而求得的值,最后利用正切差角公式求得結(jié)果.【題目詳解】,,,,,,,,故選:D.【答案點睛】該題考查的是有關(guān)三角函數(shù)求值問題,涉及到的知識點有誘導(dǎo)公式,正切倍角公式,同角三角函數(shù)關(guān)系式,正切差角公式,屬于基礎(chǔ)題目.7.A【答案解析】
將整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點,從而可選出所在象限.【題目詳解】解:,所以所對應(yīng)的點為在第一象限.故選:A.【答案點睛】本題考查了復(fù)數(shù)的乘法運算,考查了復(fù)數(shù)對應(yīng)的坐標.易錯點是誤把當成進行計算.8.C【答案解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結(jié)論.【題目詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【答案點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運算求解等數(shù)學(xué)能力,屬于難題.9.D【答案解析】
根據(jù)框圖,模擬程序運行,即可求出答案.【題目詳解】運行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【答案點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.10.D【答案解析】
由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【題目詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【答案點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.11.D【答案解析】
首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【題目詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【答案點睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.12.D【答案解析】
通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【題目詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【答案點睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【題目詳解】,結(jié)合可知原式,且,當且僅當時等號成立.即最小值為.【答案點睛】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.14.【答案解析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【題目詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【答案點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應(yīng)用,由數(shù)形結(jié)合法求線性目標函數(shù)的取值范圍,屬于中檔題.15.7.5【答案解析】
分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【題目詳解】故答案為:7.5【答案點睛】此題考查求平均數(shù),關(guān)鍵在于準確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導(dǎo)致計算出錯.16.【答案解析】
首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【題目詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【答案點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)或【答案解析】
(1)由橢圓的定義可知,焦點三角形的周長為,從而求出.寫出直線的方程,與橢圓方程聯(lián)立,根據(jù)交點橫坐標為,求出和,從而寫出橢圓的方程;(2)設(shè)出P、Q兩點坐標,由可知點為的重心,根據(jù)重心坐標公式可將點用P、Q兩點坐標來表示.由點在圓O上,知點M的坐標滿足圓O的方程,得式.為直線l與橢圓的兩個交點,用韋達定理表示,將其代入方程,再利用求得的范圍,最終求出實數(shù)的取值范圍.【題目詳解】解:(1)由題意知.,直線的方程為∵直線與橢圓的另一個交點的橫坐標為解得或(舍去),∴橢圓的方程為(2)設(shè).∴點為的重心,∵點在圓上,由得,代入方程,得,即由得解得.或【答案點睛】本題考查了橢圓的焦點三角形的周長,標準方程的求解,直線與橢圓的位置關(guān)系,其中重心坐標公式、韋達定理的應(yīng)用是關(guān)鍵.考查了學(xué)生的運算能力,屬于較難的題.18.(1),;(2)【答案解析】
(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【題目詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【答案點睛】本題考查了參數(shù)方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.19.(1);(2).【答案解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【題目詳解】(1)由正弦定理及已知得,結(jié)合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【答案點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學(xué)生的計算能力,是一道容易題.20.(1)①當時,在單調(diào)遞增,②當時,單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【答案解析】
(1)先求解導(dǎo)函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【題目詳解】(1),①當時,恒成立,則在單調(diào)遞增②當時,令得,解得,又,∴∴當時,,單調(diào)遞增;當時,,單調(diào)遞減;當時,,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個實數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒有證明,扣3分)關(guān)于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【答案點睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達到證明不等式的目的.21.(1)(2)【答案解析】
(1)由已知利用三角函數(shù)恒等變換的應(yīng)用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應(yīng)用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進而求得的值,利用三角函數(shù)恒等變換的應(yīng)用可求的值.【題目詳解】(1)由題意,根據(jù)正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數(shù)的圖象的一條對稱軸方程為,∴,得,即,∴,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年數(shù)字經(jīng)濟發(fā)展趨勢與數(shù)據(jù)安全分析考試題
- 2026年汽車維修技術(shù)中級水平測試題
- 2026年智能家居系統(tǒng)設(shè)計與安裝測試題
- 2026年人力資源開發(fā)與人才評價考試題
- 2026年高級經(jīng)濟師考試經(jīng)濟學(xué)基礎(chǔ)模擬題
- 2026年稅務(wù)師中級專業(yè)能力筆試模擬題
- 醫(yī)藥研發(fā)流程與規(guī)范指南(標準版)
- 環(huán)境監(jiān)測數(shù)據(jù)分析與評價指南(標準版)
- 未來五年多用途工作船企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年運動型防護眼鏡企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 眼底病OCT解讀演示教學(xué)課件
- 民間個人借款擔保書
- 神經(jīng)病學(xué)教學(xué)課件:阿爾茨海默病
- LY/T 1598-2011石膏刨花板
- GB/T 31588.1-2015色漆和清漆耐循環(huán)腐蝕環(huán)境的測定第1部分:濕(鹽霧)/干燥/濕氣
- GB/T 21268-2014非公路用旅游觀光車通用技術(shù)條件
- GA/T 1495-2018道路交通安全設(shè)施基礎(chǔ)信息采集規(guī)范
- 《大數(shù)據(jù)管理》課程教學(xué)大綱
- 夜間綜合施工專項專題方案公路
- ★神東煤炭集團xx煤礦礦井災(zāi)害預(yù)防與處理計劃
- Q∕GDW 11421-2020 電能表外置斷路器技術(shù)規(guī)范
評論
0/150
提交評論