下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.2.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內切圓的半徑為()A. B. C. D.3.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.4.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調遞減B.函數(shù)在上單調遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是5.復數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.6.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]7.“是函數(shù)在區(qū)間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.9.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.4010.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.11.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B. C. D.12.已知,則的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解家長對學校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:滿意度評分分組合計高一1366420高二2655220根據(jù)評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設兩個年級家長的評價結果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.14.已知函數(shù),在區(qū)間上隨機取一個數(shù),則使得≥0的概率為.15.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.16.已知等比數(shù)列{an}的前n項和為Sn,若a2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.18.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.19.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.20.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)記數(shù)列的前n項和為,,求數(shù)列的前n項和.21.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.22.(10分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉化思想和運算能力,屬于難題.2.B【解析】
設左焦點的坐標,由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內切圓的圓心分割3個三角形的面積之和可得內切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設內切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質及三角形的面積的求法,內切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.3.B【解析】
先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉化為恒成立,再利用函數(shù)性質解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質的運用,屬于綜合性較強的題目,解題的關鍵是能夠由遞推數(shù)列求出通項公式和后面的轉化函數(shù),屬于難題.4.B【解析】
根據(jù)圖象求得函數(shù)的解析式,結合余弦函數(shù)的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調遞減,當時,函數(shù)在上單調遞減,故A正確;令,得,故函數(shù)在上單調遞增.當時,函數(shù)在上單調遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.5.D【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關復數(shù)的問題,涉及到的知識點有復數(shù)的乘除運算,復數(shù)的共軛復數(shù),復數(shù)的模,屬于基礎題目.6.B【解析】
作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關鍵是理解非線性目標函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.7.C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.8.D【解析】
做出函數(shù)的圖象,問題轉化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關系轉化為兩個函數(shù)的交點是解題的關鍵,運用數(shù)形結合是解決函數(shù)零點問題的基本思想,屬于中檔題.9.A【解析】
化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.10.A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎題.11.B【解析】
利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.12.B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質比較a,c進而可得結論.【詳解】依題意,函數(shù)與函數(shù)關于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.0.42【解析】
高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.14.【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.15.【解析】
求函數(shù)的導數(shù),利用導數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點坐標為(1,0),
則函數(shù)在點(1,f(1))處的切線方程為,
即,
故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,根據(jù)導數(shù)和切線斜率之間的關系是解決本題的關鍵.16.-2【解析】試題分析:∵a2考點:等比數(shù)列性質及求和公式三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.18.(1)證明見解析;(2).【解析】
(1)把轉化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,,令,得或,故根據(jù)0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數(shù)在區(qū)間上單調遞減.又,故此時函數(shù)僅有一個零點為0;②當時,令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數(shù)還有一個零點,不符合題意;③當時,令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數(shù)還有一個零點,不符合題意.綜上,所求實數(shù)的值為.【點睛】本題考查不等式的恒成立問題和函數(shù)的零點問題,本題的難點在于把導數(shù)化成因式分解的形式,如,進而分類討論,本題屬于難題19.(1)見解析;(2).【解析】
(1)先連接,根據(jù)線面平行的判定定理,即可證明結論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結果.【詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因為平面,平面,所以平面;(2)在圖2中,過點作,垂足為,連接,,因為,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點在底面上的投影必落在直線上;記為點在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因為,所以,因此,,故;因為,所以,因此,故,所以.即直線與平面所成角的正弦值為.【點睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于??碱}型.20.(1)見解析;(2)【解析】
(1)因為,所以,所以,所以數(shù)列是等差數(shù)列,設數(shù)列的公差為,由可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物材料表面工程與細胞相互作用調控
- 生物制劑失效的IBD肛瘺患者治療方案調整
- 生物制劑失應答的炎癥性腸病影像學評估進展
- 生物3D打印的血管化策略:解決大組織工程瓶頸
- 生活質量終點在慢性病藥物失敗原因分析中的價值
- 同程旅游產品經理面試題解析及答題技巧
- 生活方式干預對神經退行性疾病進展的影響
- 政府機關辦公室主任職責與面試題
- 醫(yī)院管理崗位醫(yī)生面試題集
- 排沙潛水泵項目可行性分析報告范文(總投資15000萬元)
- 2025年下半年上海當代藝術博物館公開招聘工作人員(第二批)參考筆試試題及答案解析
- 2026國家糧食和物資儲備局垂直管理局事業(yè)單位招聘應屆畢業(yè)生27人考試歷年真題匯編附答案解析
- 癌性疼痛的中醫(yī)治療
- 方格網計算土方表格
- 學校計算機機房設計方案
- 證券投資案例分析題及答案
- 煎藥室崗前培訓PPT
- 家具制造企業(yè)安全檢查表優(yōu)質資料
- 如家酒店新版
- GA 1016-2012槍支(彈藥)庫室風險等級劃分與安全防范要求
- 《電能質量分析》課程教學大綱
評論
0/150
提交評論