上海市曹楊第二中學2022年高一上數(shù)學期末監(jiān)測試題含解析_第1頁
上海市曹楊第二中學2022年高一上數(shù)學期末監(jiān)測試題含解析_第2頁
上海市曹楊第二中學2022年高一上數(shù)學期末監(jiān)測試題含解析_第3頁
上海市曹楊第二中學2022年高一上數(shù)學期末監(jiān)測試題含解析_第4頁
上海市曹楊第二中學2022年高一上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.是上的奇函數(shù),滿足,當時,,則()A. B.C. D.2.已知集合,集合B滿足,則滿足條件的集合B有()個A.2 B.3C.4 D.13.若定義在上的函數(shù)的值域為,則取值范圍是()A. B.C. D.4.已知函數(shù).若關于x的方程在上有解,則實數(shù)m的取值范圍是()A. B.C. D.5.若角的終邊過點,則等于A. B.C. D.6.設集合,,則()A.{2,3} B.{1,2,3}C.{2,3,4} D.{1,2,3,4}7.為了得到函數(shù)的圖象,可以將函數(shù)的圖象A.向右平移 B.向右平移C.向左平移 D.向左平移8.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點,若其歐拉線方程為,則頂點C的坐標是A. B.C. D.9.函數(shù)f(x)=|x3|?ln的圖象大致為()A. B.C. D.10.在直角梯形中,,,,分別為,的中點,以為圓心,為半徑的圓交于,點在弧上運動(如圖).若,其中,,則的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的值__________.12.如圖,、、、分別是三棱柱的頂點或所在棱的中點,則表示直線與是異面直線的圖形有______.13.函數(shù)的定義域是____________.14.若冪函數(shù)在區(qū)間上是減函數(shù),則整數(shù)________15.已知命題“,”是真命題,則實數(shù)的取值范圍為__________16.定義在R上的奇函數(shù)f(x)周期為2,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知二次函數(shù).(1)求的對稱軸;(2)若,求的值及的最值.18.已知不過第二象限的直線l:ax-y-4=0與圓x2+(y-1)2=5相切(1)求直線l的方程;(2)若直線l1過點(3,-1)且與直線l平行,直線l2與直線l1關于直線y=1對稱,求直線l2的方程19.已知函數(shù),(,,),且的圖象相鄰兩個對稱軸之間的距離為,且任意,都有恒成立.(1)求的最小正周期與對稱中心;(2)若對任意,均有恒成立,求實數(shù)的取值范圍.20.某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮覆蓋面積為24m2,三月底測得覆蓋面積為36m2,鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關系有兩個函數(shù)模型與可供選擇(1)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份(參考數(shù)據(jù):lg2≈03010,lg3≈0.4771)21.已知函數(shù)fx=logax(a>0且(1)求a的值;(2)求滿足0<ffx<1

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)函數(shù)的周期性與奇偶性可得,結合當時,,得到結果.【詳解】∵∴的周期為4,∴,又是上奇函數(shù),當時,,∴,故選:D【點睛】本題考查函數(shù)的周期性與奇偶性,解題的關鍵是根據(jù)函數(shù)的性質將未知解析式的區(qū)間上函數(shù)的求值問題轉化為已知解析式的區(qū)間上來求,本題考查了轉化化歸的能力及代數(shù)計算的能力.2、C【解析】寫出滿足題意的集合B,即得解.【詳解】因為集合,集合B滿足,所以集合B={3},{1,3},{2,3},{1,2,3}.故選:C【點睛】本題主要考查集合的并集運算,意在考查學生對這些知識的理解掌握水平.3、C【解析】作函數(shù)圖象,觀察圖象確定m的范圍.【詳解】函數(shù)的圖象是對稱軸為,頂點為的開口向上的拋物線,當時,;當時,.作其圖象,如圖所示:又函數(shù)在上值域為,所以觀察圖象可得∴取值范圍是,故選:C.4、C【解析】先對函數(shù)化簡變形,然后由在上有解,可知,所以只要求出在上即可【詳解】,由,得,所以,所以,即,由在上有解,可知,所以,得,氫實數(shù)m的取值范圍是,故選:C5、C【解析】角終邊過點,則,所以.故選C.6、A【解析】根據(jù)集合的交集運算直接可得答案.【詳解】集合,,則,故選:A.7、B【解析】先將,進而由平移變換規(guī)律可得解.【詳解】函數(shù),所以只需將向右平移可得.故選B.【點睛】本題主要考查了三角函數(shù)的圖像平移變換,解題的關鍵是將函數(shù)名統(tǒng)一,需要利用誘導公式,屬于中檔題.8、A【解析】設C的坐標,由重心坐標公式求重心,代入歐拉線得方程,求出AB的垂直平分線,聯(lián)立歐拉線方程得三角形外心,外心到三角形兩頂點距離相等可得另一方程,兩方程聯(lián)立求得C點的坐標.【詳解】設C(m,n),由重心坐標公式得重心為,代入歐拉線方程得:①AB的中點為,,所以AB的中垂線方程為聯(lián)立,解得所以三角形ABC的外心為,則,化簡得:②聯(lián)立①②得:或,當時,BC重合,舍去,所以頂點C的坐標是故選A.【點睛】本題主要考查了直線方程的各種形式,重心坐標公式,屬于中檔題.9、A【解析】判斷函數(shù)的奇偶性和對稱性,利用特殊點的函數(shù)值是否對應進行排除即可【詳解】f(-x)=|x3|?ln=-|x3|?ln=-f(x),則函數(shù)f(x)是奇函數(shù),圖象關于原點對稱,排除B,D,f()=ln=ln<0,排除C,故選A【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)奇偶性和特殊值進行排除是解決本題的關鍵10、D【解析】建立如圖所示的坐標系,則A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(xiàn)(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用參數(shù)α進行表示,利用輔助角公式化簡,即可得出結論【詳解】解:建立如圖所示的坐標系,則A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(xiàn)(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)?cosα=2λ﹣μ,sinα=λ?λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范圍是[2,2]故選D【點睛】本題考查平面向量的坐標運算,考查學生的計算能力,正確利用坐標系是關鍵.屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】由,結合輔助角公式可知原式為,結合誘導公式以及二倍角公式可求值.【詳解】解:.故答案為:1.【點睛】本題考查了同角三角函數(shù)的基本關系,考查了二倍角公式,考查了輔助角公式,考查了誘導公式.本題的難點是熟練運用公式對所求式子進行變形整理.12、②④【解析】圖①中,直線,圖②中面,圖③中,圖④中,面【詳解】解:根據(jù)題意,在①中,且,則四邊形是平行四邊形,有,不是異面直線;圖②中,、、三點共面,但面,因此直線與異面;在③中,、分別是所在棱的中點,所以且,故,必相交,不是異面直線;圖④中,、、共面,但面,與異面所以圖②④中與異面故答案為:②④.13、【解析】利用對數(shù)函數(shù)的定義域列出不等式組即可求解.【詳解】由題意可得,解得,所以函數(shù)的定義域為.故答案為:14、2【解析】由題意可得,求出的取值范圍,從而可出整數(shù)的值【詳解】因為冪函數(shù)在區(qū)間上是減函數(shù),所以,解得,因為,所以,故答案為:215、【解析】此題實質上是二次不等式的恒成立問題,因為,函數(shù)的圖象拋物線開口向上,所以只要判別式不大于0即可【詳解】解:因為命題“,”是真命題,所以不等式在上恒成立由函數(shù)的圖象是一條開口向上的拋物線可知,判別式即解得所以實數(shù)的取值范圍是故答案為:【點睛】本題主要考查全稱命題或存在性命題的真假及應用,解題要注意的范圍,如果,一定要注意數(shù)形結合;還應注意條件改為假命題,有時考慮它的否定是真命題,求出的范圍.本題是一道基礎題16、0【解析】以周期函數(shù)和奇函數(shù)的性質去求解即可.【詳解】因為是R上的奇函數(shù),所以,又周期為2,所以,又,所以,故,則對任意,故故答案為:0三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)的值是,最小值是,無最大值【解析】(1)根據(jù)二次函數(shù)的對稱軸公式,即可得到結果;(2)由,可求出的值,再根據(jù)二次函數(shù)的開口和對稱軸,即可求出最值.【小問1詳解】解:因為二次函數(shù),所以對稱軸【小問2詳解】解:因為,所以.所以.所以.因為,所以開口向上,又對稱軸為,所以最小值為,無最大值.18、(1)2x-y-4=0(2)2x+y-9=0【解析】(1)利用直線l與圓x2+(y-1)2=5相切,,結合直線l不過第二象限,求出a,即可求直線l的方程;(2)直線l1的方程為2x-y+b=0,直線l1過點(3,-1),求出b,即可求出直線l1的方程;利用直線l2與l1關于y=1對稱,求出直線的斜率,即可求直線l2的方程【詳解】(1)∵直線l與圓x2+(y-1)2=5相切,∴,∵直線l不過第二象限,∴a=2,∴直線l的方程為2x-y-4=0;(2)∵直線l1過點(3,-1)且與直線l平行,∴直線l1方程為2x-y+b=0,∵直線l1過點(3,-1),∴b=-7,則直線l1的方程為2x-y-7=0,∵直線l2與l1關于y=1對稱,∴直線l2的斜率為-2,且過點(4,1),∴直線l2的斜率為y-1=-2(x-4),即化簡得2x+y-9=0【點睛】本題考查直線方程,考查直線與直線的位置關系,屬于中檔題19、(1);,;(2).【解析】(1)由題意可知,再由求出,由恒成立,可得,即,求出,根據(jù)正弦函數(shù)的對稱中心,,即可求解.(2)由題意可知,討論的正、負,求出函數(shù)的值域,只需即可求解.【詳解】(1)的兩條相鄰對稱軸之間的距離為,,,任意,恒成立,當時,,,,,,,,,令,,,,最正周期為,對稱中心為,.(2)由(1)可知,,.當,則,,當時,,恒成立,,則,當時,,恒成立,,則,綜上所述,的取值范圍為.【點睛】關鍵點點睛:本題考查了三角函數(shù)的性質、三角不等式恒成立、振幅對三角函數(shù)最值的影響,解題的關鍵是利用三角函數(shù)的性質求出、,考查了分類討論的思想,數(shù)學運算.20、(1)選擇較為合適;(2)6月【解析】(1)根據(jù)指數(shù)函數(shù)和冪函數(shù)的性質可得合適的函數(shù)的模型.(2)根據(jù)選擇的函數(shù)模型可求最小月份.小問1詳解】指數(shù)函數(shù)隨著自變量的增

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論