版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題:“,”的否定是()A., B.,C., D.,2.過點(5,2),且在y軸上的截距是在x軸上的截距的2倍的直線方程是()A.2x+y-12=0 B.x-2y-1=0或2x-5y=0C.x-2y-1=0 D.2x+y-12=0或2x-5y=03.設一個半徑為r的球的球心為空間直角坐標系的原點O,球面上有兩個點A,B,其坐標分別為(1,2,2),(2,-2,1),則()A. B.C. D.4.我國在2020年9月22日在聯(lián)合國大會提出,二氧化碳排放力爭于2030年前實現(xiàn)碳達峰,爭取在2060年前實現(xiàn)碳中和.為了響應黨和國家的號召,某企業(yè)在國家科研部門的支持下,進行技術攻關:把二氧化碳轉化為一種可利用的化工產品,經測算,該技術處理總成本y(單位:萬元)與處理量x(單位:噸)之間的函數(shù)關系可近似表示為,當處理量x等于多少噸時,每噸的平均處理成本最少()A.120 B.200C.240 D.4005.下列函數(shù)中,是奇函數(shù),又在定義域內為減函數(shù)是()A. B.C. D.6.若,則下列關系式一定成立的是()A. B.C. D.7.計算:()A.0 B.1C.2 D.38.函數(shù)的大致圖像如圖所示,則它的解析式是A. B.C. D.9.設,,則正實數(shù),的大小關系為A. B.C. D.10.借助信息技術畫出函數(shù)和(a為實數(shù))的圖象,當時圖象如圖所示,則函數(shù)的零點個數(shù)為()A.3 B.2C.1 D.0二、填空題:本大題共6小題,每小題5分,共30分。11.已知球有個內接正方體,且球的表面積為,則正方體的邊長為__________12.某市生產總值連續(xù)兩年持續(xù)增加,第一年的增長率為p,第二年的增長率為q,則該市這兩年生產總值的年平均增長率為()A. B.C. D.-113.用表示a,b中的較小者,則的最大值是____.14.不等式對任意實數(shù)都成立,則實數(shù)的取值范圍是__________15.用秦九韶算法計算多項式,當時的求值的過程中,的值為________.16.在正方體ABCD-A1B1C1D1中,E、F是分別是棱A1B1、A1D1的中點,則A1B與EF所成角的大小為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖1,直角梯形ABCD中,,,.如圖2,將圖1中沿AC折起,使得點D在平面ABC上的正投影G在內部.點E為AB的中點.連接DB,DE,三棱錐D-ABC的體積為.對于圖2的幾何體(1)求證:;18.已知直線經過直線與的交點.(1)點到直線的距離為3,求直線的方程;(2)求點到直線的距離的最大值,并求距離最大時的直線的方程19.已知函數(shù),(1)若函數(shù)在區(qū)間上存在零點,求正實數(shù)的取值范圍;(2)若,,使得成立,求正實數(shù)的取值范圍20.已知函數(shù),滿足,其一個零點為(1)當時,解關于x的不等式;(2)設,若對于任意的實數(shù),,都有,求M的最小值21.設函數(shù),.用表示,中的較大者,記為.已知關于的不等式的解集為(1)求實數(shù),的值,并寫出的解析式;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據含有一個量詞的命題的否定形式,全稱命題的否定是特稱命題,可得答案.【詳解】命題:“,”是全稱命題,它的否定是特稱命題:,,故選:C2、D【解析】根據直線是否過原點進行分類討論,結合截距式求得直線方程.【詳解】當直線過原點時,直線方程為,即.當直線不過原點時,設直線方程為,代入得,所以直線方程為.故選:D3、C【解析】由已知求得球的半徑,再由空間中兩點間的距離公式求得|AB|,則答案可求【詳解】∵由已知可得r,而|AB|,∴|AB|r故選C【點睛】本題考查空間中兩點間距離公式的應用,是基礎題4、D【解析】先根據題意求出每噸的平均處理成本與處理量之間的函數(shù)關系,然后分和分析討論求出其最小值即可【詳解】由題意得二氧化碳每噸的平均處理成本為,當時,,當時,取得最小值240,當時,,當且僅當,即時取等號,此時取得最小值200,綜上,當每月得理量為400噸時,每噸的平均處理成本最低為200元,故選:D5、C【解析】是非奇非偶函數(shù),在定義域內為減函數(shù);是奇函數(shù),在定義域內不單調;y=-x3是奇函數(shù),又在定義域內為減函數(shù);非奇非偶函數(shù),在定義域內為減函數(shù);故選C6、A【解析】判斷函數(shù)的奇偶性以及單調性,由此可判斷函數(shù)值的大小,即得答案.【詳解】由可知:,為偶函數(shù),又,知在上單調遞減,在上單調遞增,故,故選:A.7、B【解析】根據指數(shù)對數(shù)恒等式及對數(shù)的運算法則計算可得;【詳解】解:;故選:B8、D【解析】由圖易知:函數(shù)圖象關于y軸對稱,函數(shù)為偶函數(shù),排除A,B;的圖象為開口向上的拋物線,顯然不適合,故選D點睛:識圖常用方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關函數(shù)模型,利用這一函數(shù)模型來分析解決問題9、A【解析】由,知,,又根據冪函數(shù)的單調性知,,故選A10、B【解析】由轉化為與的圖象交點個數(shù)來確定正確選項.【詳解】令,,所以函數(shù)的零點個數(shù)即與的圖象交點個數(shù),結合圖象可知與的圖象有個交點,所以函數(shù)有個零點.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設正方體的棱長為x,則=36π,解得x=故答案為12、D【解析】設平均增長率為x,由題得故填.13、【解析】分別做出和的圖象,數(shù)形結合即可求解.【詳解】解:分別做出和的圖象,如圖所示:又,當時,解得:,故當時,.故答案為:.14、【解析】利用二次不等式與相應的二次函數(shù)的關系,易得結果.詳解】∵不等式對任意實數(shù)都成立,∴∴<k<2故答案為【點睛】(1)二次函數(shù)圖象與x軸交點的橫坐標、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現(xiàn)形式(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關二次函數(shù)的問題,利用數(shù)形結合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法15、,【解析】利用“秦九韶算法”可知:即可求出.【詳解】由“秦九韶算法”可知:,當求當時的值的過程中,,,.故答案為:【點睛】本題考查了“秦九韶算法”的應用,屬于基礎題.16、【解析】解:如圖,將EF平移到A1B1,再平移到AC,則∠B1AC為異面直線AB1與EF所成的角三角形B1AC為等邊三角形,故異面直線AB1與EF所成的角60°,三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取AC的中點F,連接DF,CE,EF,證明AC⊥平面DEF即可.(2)以G為坐標原點,建立空間直角坐標系,利用向量的方法求解線面角.【小問1詳解】取AC的中點F,連接DF,CE,EF,則△DAC,△EAC均為等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE?平面DEF,∴DE⊥AC【小問2詳解】連接GA,GC,∵DG⊥平面ABC,而GA?平面ABC,GC?平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分線上,又EA=EC,∴E在AC的垂直平分線上,∴EG垂直平分AC,又F為AC的中點,∴E,F(xiàn),G共線∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G為坐標原點,GM為x軸,GE為y軸,GD為z軸,建立如圖所示的空間直角坐標系,則A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),設平面DAC的法向量為=(x,y,z),則,得,令z=1,得:,于是,.18、(1)x=2或4x-3y-5=0(2)見解析【解析】(1)設過兩直線的交點的直線系方程,再根據點到直線的距離公式,求出的值,得出直線的方程;(2)先求出交點P的坐標,由幾何的方法求出距離的最大值【詳解】(1)因為經過兩已知直線交點直線系方程為(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,點到直線的距離為3,所以=3,解得λ=或λ=2,所以直線l的方程為x=2或4x-3y-5=0.(2)由解得交點P(2,1),如圖,過P作任一直線l,設d為點A到直線l的距離,則d≤|PA|(當l⊥PA時等號成立)所以dmax=|PA|=此時直線l的方程為:3x-y-5=019、(1)(2)【解析】(1)結合函數(shù)的單調性及零點存在定理可得結論;(2)由題意可得在,上,,由函數(shù)的單調性求得最值,解不等式可得所求范圍【小問1詳解】函數(shù),因為在區(qū)間上單調遞減,又,所以在區(qū)間上單調遞減,所以在區(qū)間上單調遞減,若在區(qū)間上存在零點,則.【小問2詳解】存在,,,使得成立,等價為在,上,由在,遞增,可得的最小值為,又,所以在,遞減,可得的最大值為,由,解得,所以;綜上可得,的范圍是20、(1)答案見解析(2)242【解析】(1)根據條件求出,再分類討論解不等式即可;(2)將問題轉化為,再通過換無求最值即可.【小問1詳解】因為,則,得又其一個零點為,則,得,則函數(shù)的解析式為則,即當時,解得:當時,①時,解集為R②時,解得:或,③時,解得:或,綜上,當時,不等式的解集為;當時,解集為R;當時,不等式的解集為或;當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026四川綿陽市三臺縣潼川第四幼兒園教師招聘備考題庫帶答案詳解(能力提升)
- 2025年水利水電工程師執(zhí)業(yè)技能考試試題及答案解析
- 2026廣東廣州花都區(qū)鄺維煜紀念中學臨聘教師招聘2人備考題庫及答案詳解(典優(yōu))
- 2026上海碧海金沙投資發(fā)展有限公司社會招聘備考題庫完美版
- 2026河南鄭州高新區(qū)春藤路第一幼兒園招聘3人備考題庫含答案詳解
- 2026湖南懷化國際陸港經濟開發(fā)區(qū)內國有企業(yè)招聘25人備考題庫及答案詳解參考
- 2026陜西省西咸新區(qū)涇河新城第一中學招聘備考題庫及答案詳解(易錯題)
- 2026貴州安順開發(fā)區(qū)三聯(lián)學校春季教師招聘23人備考題庫及答案詳解1套
- 2026浙江臺州椒江工業(yè)投資集團有限公司招聘工作人員1人的備考題庫及一套完整答案詳解
- 2026甘肅隴南市徽縣招聘城鎮(zhèn)公益性崗位人員備考題庫帶答案詳解
- 2026 年初中英語《狀語從句》專項練習與答案 (100 題)
- 2026年遼寧省盤錦市高職單招語文真題及參考答案
- 農投集團安全生產制度
- 近五年貴州中考物理真題及答案2025
- 2025年黑龍江省大慶市中考數(shù)學試卷
- 山東煙草2026年招聘(197人)考試備考試題及答案解析
- 手工藝品加工合同
- 研學旅行概論第六章
- GB/T 22176-2023二甲戊靈乳油
- 根據信用證制作商業(yè)發(fā)票、裝箱單、裝船通知
- GB/T 28046.4-2011道路車輛電氣及電子設備的環(huán)境條件和試驗第4部分:氣候負荷
評論
0/150
提交評論