數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第1頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第2頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第3頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第4頁
數(shù)學(xué)成人高考數(shù)學(xué)復(fù)習(xí)資料_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

成人高考數(shù)學(xué)復(fù)習(xí)資料集合和簡易邏輯考點(diǎn):交集、并集、補(bǔ)集概念:1、由全部既屬于集合A又屬于集合B的元素所組成的集合,叫做集合A和集合B的交集,記作AC1B,讀作“A交B”(求公共元素)ACB={x|x£A,且x£B}2、由全部屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做集合A和集合B的并集,記作AUB,讀作“A并B”(求全部元素)AUB={x|xWA,或x£B}cA3、如果已知全集為U,且集合A包含于U,則由U中全部不屬于A的元素組成的集合,叫做集合A的補(bǔ)集,記作“,讀作"A補(bǔ)”,"A={x|x£U,且xeA}解析:集合的交集或并集主要以例舉法或不等式的形式出現(xiàn)考點(diǎn):簡易邏輯概念:在一個數(shù)學(xué)命題中,往往由條件A和結(jié)論B兩局部構(gòu)成,寫成“如果A成立,那么B成立”。充分條件:如果A成立,那么B成立,記作“A-B”"A推出B,B不能推出A"。必要條件:如果B成立,那么A成立,記作“A-B”"B推出A,A不能推出B”。充要條件:如果A-B,又有A-B,記作“A-B”"A推出B,B推出A"。解析:分析A和B的關(guān)系,是A推出B還是B推出A,然后進(jìn)行推斷不等式和不等式組考點(diǎn):不等式的性質(zhì)如果a>b,那么b<a;反之,如果b>a,那么a<b成立如果a>b,且b>c,那么a>c如果a>b,存在一個c(c可以為正數(shù)、負(fù)數(shù)或一個整式),那么a+c>b+c,a-c>b-c如果a>b,c>0,那么ac>bc(兩邊同乘、除一個正數(shù),不等號不變)如果a>b,c<0,那么ac<bc(兩邊同乘、除一個負(fù)數(shù),不等號變號)如果a>b>0,那么a2>b2如果a>b>O,那么份;反之,如果那么a>b解析:不等式兩邊同加或同乘主要用于解一元一次不等式或一元二次不等式移項(xiàng)和合并同類項(xiàng)方面考點(diǎn):一元一次不等式定義:只有一個未知數(shù),并且未知數(shù)的最好次數(shù)是一次的不等式,叫一元一次不等式。解法:移項(xiàng)、合并同類項(xiàng)(把含有未知數(shù)的移到左邊,把常數(shù)項(xiàng)移到右邊,移了之后符號要發(fā)生改變)。如:6x+8〉9x-4,求x?把x的項(xiàng)移到左邊,把常數(shù)項(xiàng)移到右邊,變成6x-9x>-4-8,合并同類項(xiàng)之后得-3x>-12,兩邊同除-3得x<4(記得改變符號)。考點(diǎn):一元一次不等式組定義:由幾個一元一次不等式所組成的不等式組,叫做一元一次不等式組解法:求出每個一元一次不等式的值,最后求這幾個一元一次不等式的交集(公共局部)??键c(diǎn):含有絕對值的不等式定義:含有絕對值符號的不等式,如:lx|<a,lx|>a型不等式及其解法。簡單絕對值不等式的解法:|x|〈a的解集是{x|-a<x<a},取中間,在數(shù)軸上表示全部與原點(diǎn)的距離小于a的點(diǎn)的集合;、|〉a的解集是{x|x〉a或x〈-a},取兩邊,在數(shù)軸上表示全部與原點(diǎn)的距離大于a的點(diǎn)的集合。復(fù)雜絕對值不等式的解法:lax+bkc,相當(dāng)于解不等式-c〈ax+b〈c,不等式三邊同時減去b,再同時除以a(注意,當(dāng)a<0的時候,不等號要改變方向);|ax+|>c相當(dāng)于解不等式ax+b>c或ax+b〈-c,解法同一元一次不等式一樣.解析:主要搞清楚取中間還是取兩邊,取中間是連起來的,取兩邊有“或"考點(diǎn):一元二次不等式定義:含有一個未知數(shù)并且未知數(shù)的最高次數(shù)是二次的不等式,叫做一元二次不等式。如:以2+反+c>°與奴?+灰+C<°(a>0))解法:求以2+bx+c>°(a>0為例)步驟:(1)先令以2+bx+C=°,求出x(三種方法:求根公式、十字相乘法、配方法)-b±y/b2-4acx= TOC\o"1-5"\h\z求根公式: 2a2十字相乘法:如:6X-7x-5=0求x?2 1X3 -5交叉相乘后 3+-10=-7解析:左邊兩個相乘等于X?前的系數(shù),右邊兩個相乘等于常數(shù)項(xiàng),交叉相乘后相加等于x前的系數(shù),如滿足條件即可分解成:(2x+l)_j_ 5X(3x-5)=0,兩個數(shù)相乘等于0,只有當(dāng)2x+l=0或3x-5=0的時候滿足條件,所以x=2或x=3。配方法(省略)(2)求出x之后,取兩邊,“〈*取中間,即可求出答案。注意:當(dāng)a〈0時必需要不等式兩邊同乘T,使得a〉0,然后用上面的步驟來解??键c(diǎn):其他不等式不等式(ax+b)(cx+d)>0(或<0)的解法這種不等式可依一元二次方程(ax+b)(cx+d)=0的兩根情況及X?系數(shù)的正、負(fù)來確定其解集。ax+b八 >0不等式cx+d (或〈0)的解法它與(ax+b)(cx+d)>0(或<0)是同解不等式,從而前者也可化為一元二次不等式求解。此處看不明白者問我,課堂上講。指數(shù)與對數(shù)考點(diǎn):有理指數(shù)尋正整數(shù)指數(shù)靠:a"=axaxa^a表示n個a相乘,(n6'+且心口零的指數(shù)曷:a°=1(a#°)__1a=—負(fù)整數(shù)指數(shù)累: a,'(aH°,p€N+)分?jǐn)?shù)指數(shù)幫:正分?jǐn)?shù)指數(shù)嘉a"=Na"'(a河;m,ne負(fù)分?jǐn)?shù)指數(shù)幕;u負(fù)分?jǐn)?shù)指數(shù)幕;uN(a>0,;m>n+且n>l)解析:重點(diǎn)掌握負(fù)整數(shù)指數(shù)基和分?jǐn)?shù)指數(shù)界考點(diǎn):幕的運(yùn)算法則Xyx+Vaxa=a (同底數(shù)指數(shù)幕相乘,指數(shù)相加)。 (同底數(shù)指數(shù)巖相除,指數(shù)相減)(優(yōu))'=""(可以乘進(jìn)去)(酒=a"(可以分別x次)解析:重點(diǎn)掌握同底數(shù)指數(shù)幕相乘和相除考點(diǎn):對數(shù)定義:如果a"=N(a〉o且a'l),那么b叫做以a為底的N的對數(shù),記作加g""="(N>0),這里a叫做底數(shù),N叫做真數(shù)。特別底,以10為底的對數(shù)叫做常用對數(shù),通常記bgio”為電N;以e為底的對數(shù)叫做自然對數(shù),e?=2.7182818,通常記作MN。兩個恒等式:收』,log"』幾個性質(zhì):logaN^hN〉0,零和負(fù)數(shù)沒有對數(shù)log”°=1,當(dāng)?shù)讛?shù)和真數(shù)相同時等于1log"l=°,當(dāng)真數(shù)等于1的對數(shù)等于0lgl°"=。[neZ)考點(diǎn):對數(shù)的運(yùn)算法則log?(AflV)=logaM+logflN(真數(shù)相乘,等于兩個對數(shù)相加;兩個對數(shù)相加,底相同,可以變成真數(shù)相乘)Mlog“一=log“M-log“NN (真數(shù)相除,等于兩個對數(shù)相減;兩個對數(shù)相減,底相同,可以變成真數(shù)相除)log。M"="log”M(真數(shù)的次數(shù)n可以移到前面來)logflVM=llog?M加」」 T logMh=-logwMa函數(shù)考點(diǎn):函數(shù)的定義域和值域定義:X的取值范圍叫做函數(shù)的定義域;y的值的集合叫做函數(shù)的值域求定義域:y-kx+by= +bx+c一般形式的定義域:xeRky-~x分式形式的定義域:x#0y=Q根式的形式定義域:xzo= 對數(shù)形式的定義域:x>o解析:考試時一般會求結(jié)合兩種形式的定義域,分開最后求交集(公共局部)即可考點(diǎn):函數(shù)的單調(diào)性在>= 定義在某區(qū)間上任取匹,且再<尤2,相應(yīng)得出了區(qū)),/(尤2)如果:1、/(當(dāng))</(%2),則函數(shù)>=/(*)在此區(qū)間上是單調(diào)增加函數(shù),或增函數(shù),此區(qū)間叫做函數(shù)的單調(diào)遞增區(qū)間。隨著x的增加,y值增加,為增函數(shù)。2、則函數(shù)y=/(“)在此區(qū)間上是單調(diào)減少函數(shù),或減函數(shù),此區(qū)間叫做函數(shù)的單調(diào)遞減區(qū)間。隨著x的增加,y值減少,為減函數(shù)。解析:分別在其定義區(qū)間上任取兩個值,代入,如果得到的y值增加了,為增函數(shù);相反為減函數(shù)。考點(diǎn):函數(shù)的奇偶性定義:設(shè)函數(shù)丁=/(尤)的定義域?yàn)镈,如果對任意的xSD,有-xWD且:1、f(-x)=-f(x)t則稱/⑴為奇函數(shù),奇函數(shù)的圖像關(guān)于原點(diǎn)對稱2、J(-X)=/(X),則稱JOO為偶函數(shù),偶函數(shù)的圖像關(guān)于y軸對稱解析:推斷時先令》=一了,如果得出的y值是原函數(shù),則是偶函數(shù);如果得出的y值是原函數(shù)的相反數(shù),則是奇函數(shù);否則就是非奇非偶函數(shù)??键c(diǎn):一次函數(shù)定義:函數(shù)y=/*+》叫做一次函數(shù),其中晨b為常數(shù),且左彳°。當(dāng)b=。是,為正比例函數(shù),圖像經(jīng)過原點(diǎn)。當(dāng)k〉0時,圖像主要經(jīng)過一三象限;當(dāng)k〈0時,圖像主要經(jīng)過二四象限考點(diǎn):二次函數(shù)定義:y=°尤2+AX+C為二次函數(shù),其中a,b,C為常數(shù),且〃二°,當(dāng)a〉0時,其性質(zhì)如下:定義域:二次函數(shù)的定義域?yàn)镽h4ac-b2 b 亨 x———一圖像:頂點(diǎn)坐標(biāo)為(2a4a),對稱軸2a,圖像為開口向上的拋物線,如果a〈o,為開口向下的拋物線b b單調(diào)性:(-8, 2〃]單調(diào)遞減, 2a,+8)單調(diào)遞增;當(dāng)a<o時相反.4ac-b2 4ac-b2y= "" y= ■■最大值、最小值: 4〃 為最小值;當(dāng)a<0時 4" 取最大值bc+%2= ,玉?=一韋達(dá)定理: -a'a考點(diǎn):反比例函數(shù)ky--定義: x叫做反比例函數(shù)定義域:是奇函數(shù)當(dāng)k>0時,函數(shù)在區(qū)間(-OO,0)與區(qū)間(0,+8)內(nèi)是減函數(shù)當(dāng)k<0時,函數(shù)在區(qū)間(-8,0)與區(qū)間(0,+8)內(nèi)是增函數(shù)考點(diǎn):指數(shù)函數(shù)定義:函數(shù)且"D叫做指數(shù)函數(shù)定義域:指數(shù)函數(shù)的定義域?yàn)镽性質(zhì):a0=1,a1=aax>0圖像:經(jīng)過點(diǎn)(0,1),當(dāng)a>l時,函數(shù)單調(diào)遞增,曲線左方與x軸無限靠近:當(dāng)0<a〈l時,函數(shù)單調(diào)遞減,曲線右方可與x軸無限靠近。(詳細(xì)見教材12頁圖)考點(diǎn):對數(shù)函數(shù)定義:函數(shù)尸唾尸缶黃且“^叫做對數(shù)函數(shù)定義域:對數(shù)函數(shù)的定義域?yàn)椋?,+8)性質(zhì):log(,l=0,logua=l零和負(fù)數(shù)沒有對數(shù)圖像:經(jīng)過點(diǎn)(1,0),當(dāng)a>l時,函數(shù)單調(diào)遞增,曲線下方與y軸無限靠近;當(dāng)0〈a〈l時,函數(shù)單調(diào)遞減,曲線上方與y軸無限靠近。(詳細(xì)見教材13頁圖)數(shù)列考點(diǎn):通項(xiàng)公式定義:如果一個數(shù)列{""}的第n項(xiàng)""與項(xiàng)數(shù)n之間的函數(shù)關(guān)系可以用一個公式來表示,這個公式就叫做這個數(shù)列的通項(xiàng)公式。S"表示前n項(xiàng)之和,BPSn=at+a2+a3+"'ant他們有以下關(guān)系:

a\~S]Y4~S”-S〃t,n>2=q則?〃=q則備注:這個公式主要用來求右,當(dāng)不了解是什么數(shù)列的情況下。如果滿足%+1—%="則是等差數(shù)列,如果滿足%是等比數(shù)列,推斷出來之后可以直接用以下等差數(shù)列或等比數(shù)列的知識點(diǎn)來求。考點(diǎn):等差數(shù)列定義:從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的差等于同一個常數(shù),叫做等差數(shù)列,常數(shù)叫公差,用d表示.--a”=d1、等差數(shù)列的通項(xiàng)公式是:%=q+5-D”〃(6+4) ,n(n-1)dSn= =na]H 2、前n項(xiàng)和公式是: 2 23、等差中項(xiàng):如果a,A.b成差數(shù)列,那么A叫做a與b的等差中項(xiàng),且有考點(diǎn);等比數(shù)列定義:從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的比等于同一個常數(shù),叫做等比數(shù)列,常數(shù)叫公比,用q表示。1、等比數(shù)列的通項(xiàng)公式是=4“'',2、前n項(xiàng)和公式是:1一4"q3、等比中項(xiàng):如果a,B.b成比數(shù)列,那么B叫做a與b的等比中項(xiàng),且有B=±^/ab{/}是tana重點(diǎn):假設(shè)m.n.p.qeN,且〃?+〃="+q,那么:當(dāng)數(shù)列MJ是等差數(shù)列時,有%,+%=%+%;{/}是tana等比數(shù)列時,有冊q導(dǎo)數(shù)考點(diǎn):導(dǎo)數(shù)的幾何意義1、幾何意義:函數(shù)/(工)在點(diǎn)(x°'y°)處的導(dǎo)數(shù)值'(/)即為/(x)在點(diǎn)(X。,y。)處切線的斜率。即人=/(%)=(a為切線的傾斜角)。備注:這里主要考求經(jīng)過點(diǎn)('。,丫。)的切線方程,用點(diǎn)斜式得出切線方程>一="('一"。)2、函數(shù)的導(dǎo)數(shù)公式:C為常數(shù)(c)'=o(r)'=nxn"]考點(diǎn):多項(xiàng)式函數(shù)單調(diào)性的判別方法在區(qū)間(a,b)內(nèi),如果,'(X)N0則/(X)為增函數(shù):如果//(")為減函數(shù)。所以求函數(shù)單調(diào)性除可以依據(jù)函數(shù)的性質(zhì)求解外,還可以先對函數(shù)求導(dǎo),然后令/‘(x)N°解不等式就得到單調(diào)遞增區(qū)間,令,'(幻"°解不等式即得單調(diào)遞減區(qū)間??键c(diǎn):最大、最小值1、確定函數(shù)的定義區(qū)間,求出導(dǎo)數(shù)7'(尤)2,令八幻=°求函數(shù)的駐點(diǎn)(駐點(diǎn)即/'0)=0時*的根)3、用函數(shù)的根把定義區(qū)間分成假設(shè)干小區(qū)間,并列成表格.檢查了'(*)在方程根左右的值的符號,如果左正右負(fù),那么,(大)在這個根處取得極大值;如果左負(fù)右正,那么,(幻在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),則,(幻在這個根處無極值。求出后比擬得出最大值和最小值此知識點(diǎn)參考202X年全國統(tǒng)一成人高考文科試題第23題三角函數(shù)及其有關(guān)概念考點(diǎn):終邊相同的角在一個平面內(nèi)做一條射線,逆時針旋轉(zhuǎn)得到一個正角a,順時針旋轉(zhuǎn)得到一個負(fù)角b,不旋轉(zhuǎn)得到一個零角。終邊相同的角{|3=k-360+a,k屬于Z}考點(diǎn):角的度量弧度制:等于半徑長的圓弧所對的圓心角稱為1弧度的角,a表示角,1表示a所對的弧長,r表示半徑,貝的I〃1=」r角度和弧度的轉(zhuǎn)換:180°=乃弧度360°=2乃弧度考點(diǎn):任意角的三角函數(shù)定義:在平面直角坐標(biāo)系中,設(shè)P(x,y)是角a的終邊上的任意一點(diǎn),且原點(diǎn)到該點(diǎn)的距離為r('= +、2'40),則比值yxyxrr,,,,,rrxyxy分別叫做角a的正弦、余弦、正切、余切、正割、余割,即.yxyxr rsina=—,cosa=~,tana=,cota=,seca=—,csca=-r rxyxy考點(diǎn):特別角的三角函數(shù)值a0°30°45°60°90°180°270°

0TC717TCT71~271Tsina0]_2V2VV3V10-1cosa1V3~T~Tj_20-10tan?0V[316不存在0不存在cot。不存在V3]V3V0不存在0三角函數(shù)式的變換考點(diǎn):倒數(shù)關(guān)系、商數(shù)關(guān)系、平方關(guān)系.2 2 11 2 2 1 .2 2平方關(guān)系是:sin~a+cos-a=l,1+tarra=sec-a,1+co「a=csc~a:倒數(shù)關(guān)系是:tan?cot?=l.sinacsca=l,cosaseca=l:倒數(shù)關(guān)系是:sina cosatana= cota= 商數(shù)關(guān)系是: c°sa, sinao考點(diǎn):誘導(dǎo)公式1、第一組:函數(shù)同名稱,符號看象限sin(l80°+sin(l80°+a)=-sina,sin(180°-a)=sina,sin(360°-a)=-sina,sin(k360°+a)=sina,sin(-a)=-sina,cos(l80°+a)=-cosa,cos0800-a)=一cosa,cos0600-a)=cosa,cos?360。+a)=cosa,cos^a)=cosa,tan(l80°+a)=tana,tan(l80°-a)=-tana,tan(360°-a)=-tana,tan(Z360。+a)=tana,tan(-a)=-tantz,cot080°+i)=cotacot(l80°-a)=-cotacot(360(>-a)--cotacot(Z360。+a)=cota

cot(-a)=-cota2、第二組:變?yōu)橛嗪瘮?shù),符號看象限組:變?yōu)橛嗪瘮?shù),符號看象限sin(90°+asin(90°+a)=cos。,sin(90°-a)=cosa,sin(270°一a)=-cosa,sin(270°+4)=-cosa,cos(90°+a)=-sina,cos(90°-a)=sin。,cos(270°-a)=-sina,cos(270°+a)=sina,tan(90°+a)=-cota,

tan(90°-a)=cotmtan(270°-a)=cota,tan(270°+〃)=一cot。,cot(900+6r)=-tancot(90°-a)=tan67cot(270°-a)=tanacot(270°+a)=-tana考點(diǎn):兩角和、差,倍角公式]兩角和差,考點(diǎn):兩角和、差,倍角公式]兩角和差,§融3±6)=sMacos/7±cosasin/?cos(cz±ft)=cosacosyff+sincifsinotana±tan/?tan(a土尸)=1+tan(2-tanp. . 一sin2。=sin。?cos。2、倍角公式:sin2a=2sina?cosa-2cos2cr=cos2a-sin2a=2cos2a-\=l-2sin2a, 2tanatan2a= 1-tan-a。這個公式很重要,特別記得但凡出現(xiàn)三角函數(shù)平方的都要用到余弦的倍角公式,出現(xiàn)sina?cosa的都要用到sin2a要在考函數(shù)的周期公式用到?!╯inx+-cosx=J/+〃sin(x+0),tane=一3、輔助公式: a,這個公式一般在求最大值或最小值時用。三角函數(shù)的圖像和性質(zhì)考點(diǎn):三角函數(shù)的周期公式、最大值與最小值標(biāo)準(zhǔn)型周期公式最大值最小值y=Asin(tur+o)+ZT=—\co\k+\A\k-\A\y=Acos(atr+0)+Zt27r八面k+\A\0|A|y=Atan(oir+(p)+kT=—\co\無最大值無最小值考點(diǎn):正弦、余弦、正切函數(shù)的性質(zhì)2kK--,2kK+- 2k^+-,2k7r+—1、y=smx的遞增區(qū)間是2 2」(kwZ),遞減區(qū)間是2 2」伏eZ);2、y=cosx的遞增區(qū)間是[2左%一%,2br](kwZ),遞減區(qū)間是[2&乃,2人乃+%]伏eZ);(,兀in\3、y=tanx的遞增區(qū)間是I 2 2〃2€Z),V=c。*的遞減區(qū)間是(丘,k兀+兀4,y=smx為奇函數(shù),y=cosx為偶函數(shù),V=tanx為奇函數(shù)一般推斷函數(shù)的奇偶性會考到。解三角形考點(diǎn):余弦定理(己知兩邊一角)由余弦定理第一種形式:b由余弦定理第一種形式:b2=a2+c2-2accosB由余弦定理第二種形式:cosB=考點(diǎn):正弦定理(已知兩角一邊)2+。2-82

2ac—=2+。2-82

2ac—=2R考點(diǎn):面積公式(已知兩邊夾角求面積)已知△ABC,A角所對的邊長為a,B角所對的邊長為b,C角所對的邊長為c,則三角形的面積如下:S^c--absinC=~^zcsinB=Z?csinA2 2 2平面向量考點(diǎn):向量的內(nèi)積運(yùn)算(數(shù)量積)4與1的數(shù)量積(或內(nèi)積)a*b=ab-cosO考點(diǎn):向量的坐標(biāo)運(yùn)算設(shè)a=(M,%)/=y,%),則:加法運(yùn)算:a+b=("「M)+(”2,8)=減法運(yùn)算:a-b=(x"i)—(*2數(shù)乘運(yùn)算:ka=H"”%)=(依,**)內(nèi)積運(yùn)算:a.b=(*,凹)*(“2,為)=X/2+H乃垂直向量:aJ_b="/2+%y2=°向量的模:gkJx,+y?重點(diǎn)是向量垂直或求內(nèi)積運(yùn)算。考點(diǎn):兩個公式1、平面內(nèi)兩點(diǎn)的距離公式:已知45,%),舄(%2,。2)兩點(diǎn),其距離:山川=J(無?一九2>+(M—當(dāng)產(chǎn)線段的中點(diǎn)公式:已知4(為,月),鳥(龍2,>2)兩點(diǎn),線段4g的中點(diǎn)的M的坐標(biāo)為(蒼》),則:再+々、,_必+力2 2直線考點(diǎn):直線的斜率%一%直線斜率的定義式為k=31a(1為傾斜角),已知兩點(diǎn)可以求的斜率k="2-2,(點(diǎn)A(x“yJ和點(diǎn)B(X2,%)為直線上任意兩點(diǎn))??键c(diǎn):直線方程的幾種形式點(diǎn)斜式:y-yo=Mx-x。),已知斜率k和某點(diǎn)坐標(biāo)際汽)斜截式:y=kx+b,已知斜率k和在y軸的截距b兩點(diǎn)式:力一MW-2,已知兩點(diǎn)坐標(biāo)4>],必),儀工2,力)2+上=1截距式:ab,已知在x軸的截距是a,在y軸的截距是b一般式:兒+By+c=°重點(diǎn):直線的點(diǎn)斜式考點(diǎn):兩條直線的位置關(guān)系口線6:4x+gy+C]—0,/):A)元=0k—k兩條直線平行:?一心兩條直線垂直:占X*2=T重點(diǎn):平行或垂直兩條宜線的斜率關(guān)系考點(diǎn):點(diǎn)到直線的距離公式d_|4玉>+b%+q點(diǎn)P(Xo,yo)到直線/:Ax+3y+C=0的距離: +B2l!3l錐曲線考點(diǎn):圓1、圓的標(biāo)準(zhǔn)方程是:"一")~+(y—”廠=/,其中:半徑是r,圓心坐標(biāo)為(a,b),ylD2+E2-4F2、圓的一般方程是:/+y2+m+@+尸=0(£>-+爐_4尸>0),其中:半徑是 2 ,圓心坐標(biāo)是I2 2)3、圓與直線的位置關(guān)系最常用的方法有兩種,即:①判別式法:A>0,=0,<0,等價于直線與圓相交.相切.相離;②考查圓心到直線的距離與半徑的大小關(guān)系:距離大于半徑.等于半徑.小于半徑,等價于直線與圓相離.相切.相交?考點(diǎn):橢圓

.橢圓標(biāo)準(zhǔn)方程的兩種形式是:a'b'和/b'(a>^>0)TOC\o"1-5"\h\z\o"CurrentDocument"2 2 2xyf c—H—'-=]. x-i— e——.橢圓a?b? (°>,>°)的焦點(diǎn)坐標(biāo)是(土C'°),準(zhǔn)線方程是 c,離心率是 a(長軸長是左,短軸長是2。,焦距是2c,其中c?=a2-b\重點(diǎn);弄清楚a、b、c分別表示什么意思,并能求出標(biāo)準(zhǔn)方程??键c(diǎn):雙曲線.雙曲線標(biāo)準(zhǔn)方程的兩種形式是:/和/b2(。>°,6>0)。丁V c b.雙曲線b~的焦點(diǎn)坐標(biāo)是(一 準(zhǔn)線方程是 c,離心率是 漸近線方程是“ a,長軸長是加,短軸長是左,焦距是2c。其中〃=a2+b2a.假設(shè)直線丁=h與圓錐曲線交于兩點(diǎn)A(xl,yl),B(x2,y2),則弦長為M=J(1+—)(百-/)-;.假設(shè)直線*='政+'與圓錐曲線交于兩點(diǎn)A(xl,yl),B(x2,y2),則弦長為加0=J(1+/)(M-%了重點(diǎn):弄清楚a、b,c分別表示什么意思,并能求標(biāo)準(zhǔn)方程。考點(diǎn);拋物線.拋物線標(biāo)準(zhǔn)方程的四種形式是:廠=2px,y2=-2px,X2-2py,x2=-2pyo2. 修,()] k”.拋物線y=2px的焦點(diǎn)坐標(biāo)是:<2),準(zhǔn)線方程是:2。重點(diǎn);弄清楚拋物線開口往哪個方向,然后能求p,從而得出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程。排列組合、概率統(tǒng)計(jì)考點(diǎn):分類計(jì)數(shù)法和分步計(jì)數(shù)法分類計(jì)數(shù)法:完成一件事有兩類方法,第一類方法由m種方法,第二類方法有n種方法,無論用哪一類方法中的哪種方法,都能完成這件事,則完成這件事總共有m+n種方法。分步計(jì)數(shù)法:完成一件事有兩個步驟,第一個步驟有m種方法,第二個步驟有n種方法,連續(xù)完成這兩個步驟這件事才完成,那么完成這件事

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論