河北省隆堯縣北樓中學等2022年九年級數(shù)學第一學期期末考試試題含解析_第1頁
河北省隆堯縣北樓中學等2022年九年級數(shù)學第一學期期末考試試題含解析_第2頁
河北省隆堯縣北樓中學等2022年九年級數(shù)學第一學期期末考試試題含解析_第3頁
河北省隆堯縣北樓中學等2022年九年級數(shù)學第一學期期末考試試題含解析_第4頁
河北省隆堯縣北樓中學等2022年九年級數(shù)學第一學期期末考試試題含解析_第5頁
免費預覽已結束,剩余16頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.“拋一枚均勻硬幣,落地后正面朝上”這一事件是()A.必然事件 B.隨機事件 C.確定事件 D.不可能事件2.下列說法中錯誤的是()A.籃球隊員在罰球線上投籃一次,未投中是隨機事件B.“任意畫出一個平行四邊形,它是中心對稱圖形”是必然事件C.“拋一枚硬幣,正面向上的概率為”表示每拋兩次就有一次正面朝上D.“拋一枚均勻的正方體骰子,朝上的點數(shù)是6的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是6”這一事件發(fā)生的頻率穩(wěn)定在附近3.一元二次方程x2-8x-1=0配方后可變形為()A.(x+4)2=17 B.(x+4)2=15 C.(x-4)2=17 D.(x-4)2=154.某學校要種植一塊面積為100m2的長方形草坪,要求兩邊長均不小于5m,則草坪的一邊長為y(單位:m)隨另一邊長x(單位:m)的變化而變化的圖象可能是()A. B. C. D.5.從﹣1,0,1,2,3這五個數(shù)中,任意選一個數(shù)記為m,能使關于x的不等式組有解,并且使一元二次方程(m﹣1)x2+2mx+m+2=0有實數(shù)根的數(shù)m的個數(shù)為()A.1個 B.2個 C.3個 D.4個6.常勝村2017年的人均收入為12000元,2019年的人均收入為15000元,求人均收入的年增長率.若設人均收入的年增長率為x,根據題意列方程為()A. B.C. D.7.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.8.如圖,在平面直角坐標系中,點、、為反比例函數(shù)()上不同的三點,連接、、,過點作軸于點,過點、分別作,垂直軸于點、,與相交于點,記四邊形、、的面積分別為,、、,則()A. B. C. D.9.如圖,已知二次函數(shù)()的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:①當x>3時,y<0;②3a+b<0;③;④;其中正確的結論是()A.①③④ B.①②③ C.①②④ D.①②③④10.下列各數(shù)中是無理數(shù)的是()A.0 B. C. D.0.511.某射擊運動員在訓練中射擊了10次,成績如圖所示:下列結論不正確的是()A.眾數(shù)是8 B.中位數(shù)是8 C.平均數(shù)是8.2 D.方差是1.212.若,面積之比為,則相似比為()A. B. C. D.二、填空題(每題4分,共24分)13.太陽從西邊升起是_____事件.(填“隨機”或“必然”或“不可能”).14.一元二次方程的解為________.15.在一個不透明的袋子里裝有黃色、白色乒乓球共40個,除顏色外其他完全相同.小明從這個袋子中隨機摸出一球,放回.通過多次摸球實驗后發(fā)現(xiàn),摸到黃色球的概率穩(wěn)定在15%附近,則袋中黃色球可能有___個.16.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.17.工程上常用鋼珠來測量零件上小圓孔的寬口,假設鋼珠的直徑是10mm,測得鋼珠頂端離零件表面的距離為8mm,如圖所示,則這個小圓孔的寬口AB的長度為____mm.18.如圖,在平面直角坐標系中,已知A(1,0),D(3,0),△ABC與△DEF位似,原點O是位似中心,若AB=2,則DE=______.三、解答題(共78分)19.(8分)解下列方程(1)(2)20.(8分)已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)求的面積;(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.21.(8分)永祚寺雙塔,又名凌霄雙塔,是山西省會太原現(xiàn)存古建筑中最高的建筑.位于太原市城區(qū)東南向山腳畔.數(shù)學活動小組的同學對其中一塔進行了測量.測量方法如下:如圖所示,間接測得該塔底部點到地面上一點的距離為,塔的頂端為點,且,在點處豎直放一根標桿,其頂端為,在的延長線上找一點,使三點在同一直線上,測得.(1)方法1,已知標桿,求該塔的高度;(2)方法2,測得,已知,求該塔的高度.22.(10分)某汽車銷售公司去年12月份銷售新上市的一種新型低能耗汽車200輛,由于該型汽車的優(yōu)越的經濟適用性,銷量快速上升,若該型汽車每輛的盈利為5萬元,則平均每天可售8輛,為了盡量減少庫存,汽車銷售公司決定采取適當?shù)慕祪r措施,經調查發(fā)現(xiàn),每輛汽車每降5000元,公司平均每天可多售出2輛,若汽車銷售公司每天要獲利48萬元,每輛車需降價多少?23.(10分)如圖,在平面直角坐標系中,拋物線(a≠0)與y軸交與點C(0,3),與x軸交于A、B兩點,點B坐標為(4,0),拋物線的對稱軸方程為x=1.(1)求拋物線的解析式;(2)點M從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點N從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設△MBN的面積為S,點M運動時間為t,試求S與t的函數(shù)關系,并求S的最大值;(3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.24.(10分)某水果商場經銷一種高檔水果,原價每千克25元,連續(xù)兩次漲價后每千克水果現(xiàn)在的價格為36元.(1)若每次漲價的百分率相同.求每次漲價的百分率;(2)若進價不變,按現(xiàn)價售出,每千克可獲利15元,但該水果出現(xiàn)滯銷,商場決定降價m元出售,同時把降價的幅度m控制在的范圍,經市場調查發(fā)現(xiàn),每天銷售量(千克)與降價的幅度m(元)成正比例,且當時,.求與m的函數(shù)解析式;(3)在(2)的條件下,若商場每天銷售該水果盈利元,為確保每天盈利最大,該水果每千克應降價多少元?25.(12分)如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,以CD為直徑的⊙O分別交AC,BC于點E,F(xiàn)兩點,過點F作FG⊥AB于點G.(1)試判斷FG與⊙O的位置關系,并說明理由;(2)若AC=6,CD=5,求FG的長.26.如圖,在中,,,,點分別是邊的中點,連接.將繞點順時針方向旋轉,記旋轉角為.①②③④(1)問題發(fā)現(xiàn):當時,.(2)拓展探究:試判斷:當時,的大小有無變化?請僅就圖②的情況給出證明.(3)問題解決:當旋轉至三點共線時,如圖③,圖④,直接寫出線段的長.

參考答案一、選擇題(每題4分,共48分)1、B【詳解】隨機事件.根據隨機事件的定義,隨機事件就是可能發(fā)生,也可能不發(fā)生的事件,即可判斷:拋1枚均勻硬幣,落地后可能正面朝上,也可能反面朝上,故拋1枚均勻硬幣,落地后正面朝上是隨機事件.故選B.2、C【分析】根據隨機事件的定義可判斷A項,根據中心對稱圖形和必然事件的定義可判斷B項,根據概率的定義可判斷C項,根據頻率與概率的關系可判斷D項,進而可得答案.【詳解】解:A、籃球隊員在罰球線上投籃一次,未投中是隨機事件,故本選項說法正確,不符合題意;B、“任意畫出一個平行四邊形,它是中心對稱圖形”是必然事件,故本選項說法正確,不符合題意;C、“拋一枚硬幣,正面向上的概率為”表示每拋兩次就有一次正面朝上,故本選項說法錯誤,符合題意;D、“拋一枚均勻的正方體骰子,朝上的點數(shù)是6的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是6”這一事件發(fā)生的頻率穩(wěn)定在附近,故本選項說法正確,不符合題意;故選:C.【點睛】本題考查了隨機事件、必然事件、中心對稱圖形以及頻率與概率的關系等知識,熟練掌握上述知識是解題的關鍵.3、C【分析】常數(shù)項移到方程的右邊,再在兩邊配上一次項系數(shù)一半的平方,寫成完全平方式即可得.【詳解】解:∵,∴,即,故選:C.【點睛】本題主要考查配方法解一元二次方程,熟練掌握配方法解方程的步驟和完全平方公式是解題的關鍵.4、C【詳解】由草坪面積為100m2,可知x、y存在關系y=,然后根據兩邊長均不小于5m,可得x≥5、y≥5,則x≤20,故選:C.5、B【分析】根據一元一次不等式組可求出m的范圍,根據判別式即可求出答案.【詳解】解:∵∴2﹣2m≤x≤2+m,由題意可知:2﹣2m≤2+m,∴m≥0,∵由于一元二次方程(m﹣1)x2+2mx+m+2=0有實數(shù)根,∴△=4m2﹣4(m﹣1)(m+2)=8﹣4m≥0,∴m≤2,∵m﹣1≠0,∴m≠1,∴m的取值范圍為:0≤m≤2且m≠1,∴m=0或2故選:B.【點睛】本題考查不等式組的解法以及一元二次方程,解題的關鍵是熟練運用根的判別式.6、D【分析】根據“每年的人均收入上一年的人均收入(1年增長率)”即可得.【詳解】由題意得:2018年的人均收入為元2019年的人均收入為元則故選:D.【點睛】本題考查了列一元二次方程,理解題意,正確找出等式關系是解題關鍵.7、C【分析】過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據等邊三角形的性質可求出OH的長,根據S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數(shù)形結合思想的應用.8、C【分析】根據反比例函數(shù)系數(shù)k的幾何意義得到S1=S2<S3,即可得到結論.【詳解】解:∵點A、B、C為反比例函數(shù)(k>0)上不同的三點,AD⊥y軸,BE,CF垂直x軸于點E、F,

∴S3=k,S△BOE=S△COF=k,∵S△BOE-SOGF=S△CDF-S△OGF,

∴S1=S2<S3,∴,故選:C.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的性質,正確的識別圖形是解題的關鍵.9、B【分析】①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,1),當x>3時,y<1,故①正確;②拋物線開口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正確;③設拋物線的解析式為y=a(x+1)(x﹣3),則,令x=1得:y=﹣3a.∵拋物線與y軸的交點B在(1,2)和(1,3)之間,∴.解得:,故③正確;④.∵拋物線y軸的交點B在(1,2)和(1,3)之間,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,與2≤c≤3矛盾,故④錯誤.【詳解】解:①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,1),當x>3時,y<1,故①正確;②拋物線開口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正確;③設拋物線的解析式為y=a(x+1)(x﹣3),則,令x=1得:y=﹣3a.∵拋物線與y軸的交點B在(1,2)和(1,3)之間,∴.解得:,故③正確;④.∵拋物線y軸的交點B在(1,2)和(1,3)之間,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,與2≤c≤3矛盾,故④錯誤.故選B.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關系,結合圖像,數(shù)形結合的思想的運用是本題的解題關鍵..10、C【分析】根據無理數(shù)的定義,分別進行判斷,即可得到答案.【詳解】解:根據題意,是無理數(shù);0,,0.5是有理數(shù);故選:C.【點睛】本題考查了無理數(shù)的定義,解題的關鍵是熟記無理數(shù)的定義進行解題.11、D【分析】首先根據圖形數(shù)出各環(huán)數(shù)出現(xiàn)的次數(shù),在進行計算眾數(shù)、中位數(shù)、平均數(shù)、方差.【詳解】根據圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數(shù)是8,中位數(shù)是8,平均數(shù)是方差是故選D【點睛】本題主要考查統(tǒng)計的基本知識,關鍵在于眾數(shù)、中位數(shù)、平均數(shù)和方差的概念.特別是方差的公式.12、C【分析】根據相似三角形的面積比等于相似比的平方可直接得出結果.【詳解】解:∵兩個相似三角形的面積比為9:4,

∴它們的相似比為3:1.

故選:C.【點睛】此題主要考查了相似三角形的性質:相似三角形的面積比等于相似比的平方.二、填空題(每題4分,共24分)13、不可能【分析】根據隨機事件的概念進行判斷即可.【詳解】太陽從西邊升起是不可能的,∴太陽從西邊升起是不可能事件,故答案為:不可能.【點睛】本題考查了隨機事件的概念,掌握知識點是解題關鍵.14、,【解析】利用“十字相乘法”對等式的左邊進行因式分解.【詳解】由原方程,得,則或,解得,.故答案為:,.【點睛】本題考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).15、1【分析】根據概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:設袋中黃色球可能有x個.根據題意,任意摸出1個,摸到黃色乒乓球的概率是:15%=,解得:x=1.∴袋中黃色球可能有1個.故答案為:116、1.【詳解】∵AB=5,AD=12,∴根據矩形的性質和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為117、8【分析】先根據鋼珠的直徑求出其半徑,再構造直角三角形,求出小圓孔的寬口AB的長度的一半,最后乘以2即為所求.【詳解】連接OA,過點O作OD⊥AB于點D,則AB=2AD,∵鋼珠的直徑是10mm,∴鋼珠的半徑是5mm.∵鋼珠頂端離零件表面的距離為8mm,∴OD=3mm.在Rt△AOD中,∵mm,∴AB=2AD=2×4=8mm【點睛】本題是典型的幾何聯(lián)系實際應用題,熟練運用垂徑定理是解題的關鍵.18、1【解析】利用位似的性質得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入計算即可.【詳解】解:∵△ABC與△DEF位似,原點O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【點睛】考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.三、解答題(共78分)19、(1);(2).【分析】(1)方程變形后,利用因式分解法即可求解;(2)方程變形后,利用因式分解法即可求解.【詳解】(1)方程變形得:,

分解因式得:,

即:或,∴;(2)方程變形得:,

分解因式得:,

即:或,∴.【點睛】本題考查了一元二次方程的解法,靈活運用因式分解法是解決本題的關鍵.20、(1),y=x+3;(2)S△AOB=;(3)x>1,12,-4<a<0【分析】(1)把A的坐標代入反比例函數(shù)解析式求出A的坐標,把A的坐標代入一次函數(shù)解析式求出即可;

(2)求出直線AB與y軸的交點C的坐標,分別求出△ACO和△BOC的面積,然后相加即可;

(3)根據A、B的坐標結合圖象即可得出答案.【詳解】(1)把A點(1,4)分別代入反比例函數(shù)解析式,一次函數(shù)解析式y(tǒng)=kx+b,得,k=1×4,1+b=4,解得,k=4,b=3,所以反比例函數(shù)解析式是,一次函數(shù)解析式y(tǒng)=x+3,(2)如圖當X=-4時,y=-1,∴B(-4,-1),當y=0時,x+3=0,x=-3,∴C(-3,0),∴S△AOB=S△AOC+S△BOC=故答案為(3)∵B(-4,-1),A(1,4),

∴根據圖象可知:當x>1或-4<x<0時,一次函數(shù)值大于反比例函數(shù)值.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,用待定系數(shù)法求一次函數(shù)的解析式,三角形的面積,一次函數(shù)的圖象等知識點,題目具有一定的代表性,是一道比較好的題目,用了數(shù)形結合思想.21、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定與性質得出,進而得出答案;(2)根據銳角三角函數(shù)的定義列出,然后代入求值即可.【詳解】解:則即解得:答:該塔的高度為55m.在中答:該塔的高度為【點睛】本題考查相似三角形的判定和性質及解直角三角形的應用,熟練掌握相似三角形對應邊的比相等和角的正切值的求法是本題的解題關鍵.22、每輛車需降價2萬元【分析】設每輛車需降價萬元,根據每輛汽車每降5000元,公司平均每天可多售出2輛可用x表示出日銷售量,根據每天要獲利48萬元,利用利潤=日銷售量×單車利潤列方程可求出x的值,根據盡量減少庫存即可得答案.【詳解】設每輛車需降價萬元,則日銷售量為輛,依題意,得:,解得:,,∵要盡快減少庫存,∴.答:每輛車需降價2萬元.【點睛】此題主要考查了一元二次方程的應用,找到關鍵描述語,得出等量關系是解題關鍵.23、(1);(2)S=,運動1秒使△PBQ的面積最大,最大面積是;(3)t=或t=.【分析】(1)把點A、B、C的坐標分別代入拋物線解析式,列出關于系數(shù)a、b、c的解析式,通過解方程組求得它們的值;(2)設運動時間為t秒.利用三角形的面積公式列出S△MBN與t的函數(shù)關系式.利用二次函數(shù)的圖象性質進行解答;(3)根據余弦函數(shù),可得關于t的方程,解方程,可得答案.【詳解】(1)∵點B坐標為(4,0),拋物線的對稱軸方程為x=1,∴A(﹣2,0),把點A(﹣2,0)、B(4,0)、點C(0,3),分別代入(a≠0),得:,解得:,所以該拋物線的解析式為:;(2)設運動時間為t秒,則AM=3t,BN=t,∴MB=6﹣3t.由題意得,點C的坐標為(0,3).在Rt△BOC中,BC==2.如圖1,過點N作NH⊥AB于點H,∴NH∥CO,∴△BHN∽△BOC,∴,即,∴HN=t,∴S△MBN=MB?HN=(6﹣3t)?t,即S=,當△PBQ存在時,0<t<2,∴當t=1時,S△PBQ最大=.答:運動1秒使△PBQ的面積最大,最大面積是;(3)如圖2,在Rt△OBC中,cos∠B=.設運動時間為t秒,則AM=3t,BN=t,∴MB=6﹣3t.①當∠MNB=90°時,cos∠B=,即,化簡,得17t=24,解得t=;②當∠BMN=90°時,cos∠B=,化簡,得19t=30,解得t=.綜上所述:t=或t=時,△MBN為直角三角形.考點:二次函數(shù)綜合題;最值問題;二次函數(shù)的最值;動點型;存在型;分類討論;壓軸題.24、(1)20%;(2)(3)商場為了每天盈利最大,每千克應降價7元【分析】(1)設每次漲價的百分率為x,根據題意列出方程即可;(2)根據題意列出函數(shù)表達式即可;(3)根據等量關系列出函數(shù)解析式,然后根據解析式的性質,求出最值即可.【詳解】解:(1)設每次漲價的百分率為x,根據題意得:25(1+x)2=36,解得:(不合題意舍去)答:每次漲價的百分率20%;(2)設,把,代入得,∴k=30,∴y與m的函數(shù)解析式為;(3)依題有,∵拋物線的開口向下,對稱軸為,∴當時,w隨m的增大而增大,又,∴當時,每天盈利最大,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論