版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
GroupsandCodingGroupsandCodingCodingofBinaryInformationandErrorDetectionDecodingandErrorCorrectionCodingofBinaryInformationandErrorDetectionEncodingfunctionHammingdistanceGroupCodesParitycheckmatrixCodingtheoryIntoday’smodernworldofcommunication,dataitemsareconstantlybeingtransmittedfrompointtopoint.Thebasicproblemintransmissionofdataisthatofreceivingthedataassentandnotreceivingadistortedpieceofdata.Codingtheoryhasdevelopedtechniquesforintroducingredundantinformation(引入冗余信息)intransmitteddatathathelpindetecting,andsometimesincorrecting,errors.UnitofinformationMessage(消息)isafinitesequenceofcharactersfromafinitealphabetB={0,l}Word(字)isasequenceofm0'sandl's.GroupsThesetBisagroupunderthebinaryoperation+(mod2addition)ItfollowsthatBm=B
B
…
B(nfactors)isagroupundertheoperatordefinedby(x1,x2,…,xm)(y1,y2,…,ym) =(x1+y1,x2+y2,
…,xm+ym)AnelementinBmwillbewrittenas(b1,b2,...,bm)ormoresimplyasb1b2...bmTransmissionchannelandNoiseAnelementx
Bmissentthroughthetransmissionchannelandisreceivedasanelementxt
Bm.TransmissionchannelandNoiseNoise(噪聲)
inthetransmissionchannelmaycausea0tobereceivedasal,orviceversa,leadxxt對(duì)錯(cuò)對(duì)對(duì)時(shí)Encodingfunction-編碼函數(shù)Choose:anintegern>mandaone-to-onefunctione:Bm
Bneiscalledan(m,n)encodingfunction,representingeverywordinBmasawordinBn.Ifb
Bm,thene(b)iscalledthecodeword(碼字)representingb.EncodingfunctionIfthetransmissionchannelisnoiseless,thenxt=xforallxinBn.Inthiscasex=e(b)isreceivedforeachb
Bm,andsinceeisaknownfunction,bmaybeidentified.EncodingfunctionIngeneral,errorsintransmissiondooccur.Wewillsaythatthecodewordx=e(b)hasbeentransmittedwithkorfewererrorsifxandxtdifferinatleast1butnomorethankpositions.Errordetect–差錯(cuò)檢測(cè)Lete:Bm
Bnbean(m,n)encodingfunction.e
detectskorfewererrorsifwheneverx=e(b)istransmittedwithkorfewererrors,thenxt
isnotacodeword(thusxtcouldnotbexandthereforecouldnothavebeencorrectlytransmitted).Forb
Bn,thenumberofl'sinxiscalledtheweight(權(quán))ofxandisdenotedby|x|Example1FindtheweightofeachofthefollowingwordsinB5.x=01000 |x|=1x=11100 |x|=3x=00000 |x|=0x=11111 |x|=5Example2
paritycheckcode–奇偶校驗(yàn)碼Thefollowingencodingfunctione:Bm
Bm+1iscalledtheparity(m,m+1)checkcode:Ifb=b1b2…bm
Bm,define e(b)=b1b2…bm
bm+1whereExample2
paritycheckcodeLetm=3.Thene(000)=0000e(001)=0011e(010)=0101e(011)=0110e(100)=1001e(101)=1010e(110)=1100e(111)=1111Supposenowthatb=111.Thenx=e(b)=1111Example3Considerthe(m,3m)
encodingfunctione:Bm
B3m.Ifb=b1b2…bm
Bm,define e(b)=b1b2…bmb1b2…bmb1b2…bmExample3Supposenowthatb=011Thene(011)=011011011.Assumenowwereceivetheword011111011.Thisisnotacodeword,sowehavedetectedtheerror.(00,10,01,11)
(00,11)(1,1)(1,0)(0,1)(0,0)Bm(0,1)->Bn(000,111)(1,1,1)(0,1,1)(1,1,0)(0,1,0)(1,0,1)(0,0,1)(1,0,0)(0,0,0)Hammingdistance–海明距離LetxandybewordsinBm.TheHammingdistance
(x,y)betweenxandyistheweight,|xy|,ofx
y.Thedistancebetweenx=x1x2…xmandy=y1y2…ymisthenumberofvariousofisuchthatxi
yi,thatis,thenumberofpositionsinwhichxandydiffer.Usingtheweightofx
yisaconvenientwaytocountthenumberofdifferentpositions.Example4Findthedistancebetweenxandy:(a)x=110110,y=000101(b)x=001100,y=010110.Solution(a)x
y=110011,so|x
y|=4(b)x
y=011010,so|x
y|=3Theorem1
propertiesofdistancefunctionLetx,y,andzbeelementsofBm.Then(a)(x,y)=(y,x)(b)(x,y)≥0(c)(x,y)=0ifandonlyifx=y(d)(x,y)≤(x,z)+(z,y)Proofof(d)(x,y)=|x
y|=|x
0
y| =|x
z
z
y|
≤|x
z|+|
z
y|MinimumdistanceTheminimumdistanceofanencodingfunctione:Bm
Bnistheminimumofthedistancesbetweenalldistinctpairsofcodewords;thatis, min{(e(x),e(y))|x,y
Bm}Example5Considerthefollowing(2,5)encodingfunctione:Theorem2An(m,n)encodingfunctione:Bm
Bncandetectkorfewererrorsifandonlyifitsminimumdistanceisatleastk+l.Proof
theminimumdistanceisatleastk+1Letb
Bm,andletx=e(b)
Bnbethecodewordrepresentingb.xistransmittedandisreceivedasxt.Ifxtwereacodeworddifferentfromx,then(x,xt)≥
k+l,soxwouldbetransmittedwithk+lormoreerrors.Thus,ifxistransmittedwithkorfewererrors,thenxtcannotbeacodeword.Thismeansthatecandetectkorfewererrors.Proof
ecandetectkorfewererrorsSupposethattheminimumdistancebetweencodewordsisr
≤
kLetxandybecodewordswith(x,y)=r.Ifx=y,thatis,ifxistransmittedandismistakenlyreceivedasy,thenr≤kerrorshavebeencommittedandhavenotbeendetected.Thusitcontradictwithecandetectkorfewererrors.Q.E.D.Example6
Howmanyerrorswilledetect?Considerthe(3,8)encodingfunctione:B3
B8definedbyGroupCodes–群碼An(m,n)encodingfunctione:Bm
Bniscalledagroupcodeife(Bm)={e(b)|e(b)
Bn}=Ran(e)isasubgroupofBnSubgroupsRecallfromthedefinitionofsubgroupgiveinSection9.4thatNisasubgroupofBnif(a)theidentityofBnisinN,(b)ifxandybelongtoN,thenx
y
N,and(c)ifxisinN,thenitsinverseisinN.Example7:iseagroupcode?Considerthe(3,6)encodingfunctione:B3
B6definedbyExample7:iseagroupcode?WemustshowthatthesetofallcodewordsN={000000,001100,010011,011111,100101,101001,110110,111010}isasubgroupofB6.Theorem3Lete:Bm
Bnbeagroupcode.Theminimumdistanceofeistheminimumweightofanonzerocodeword.ProofofTheorem3Letbetheminimumdistanceofthegroupcode,andsupposethat=(x,y),wherexandyaredistinctcodewords.Also,letbetheminimumweightofanonzerocodewordandsupposethat=|z|foracodewordz.ProofofTheorem3Sinceeisagroupcode,x
yisanonzerocodeword.Thus=(x,y)=|x
y|≥
.Ontheotherhand,since0andzaredistinctcodewords,=|z|=|z
0|=(z,0)≥
Hence=.Q.E.D.Example8Theminimumdistanceofthegroupcodeinis2Tocheckthisdirectlywouldrequire28differentcalculations.ConstructinggroupcodeAreviewonBooleanmatricesmod-2sum
DEmod-2BooleanproductD*ETheorem4LetDandEbem
pBooleanmatrices,andletFbeap
nBooleanmatrix.Then(D
E)*F=(D*F)(E*F).Thatis,adistributivepropertyholdsforand*.NotationWeshallnowconsidertheelementx=x1x2…xn
Bn
asthe1
nmatrix[x1x2…xn]Theorem5Letmandnbenonnegativeintegerswithm<n,r=n-m,andletHbeann
rBooleanmatrix.ThenthefunctionfH:Bn
BrdefinedbyfH(x)=x*H,x
Bn;isahomomorphismfromthegroupBntothegroupBr.ProofIfxandyareelementsinBn,thenfH(x
y)=(xy)*H
=(x*H)(y*H) byTheorem4 =fH(x
)
fH(y).HencefHisahomomorphismfromBntoBrQ.E.D.Corollary1Letm,n,r,H,andfHbeasinTheorem5.ThenN={x
Bn|x*H=0}isanormalsubgroupofBn.Proof:NisthekernelofthehomomorphismfH,soitisanormalsubgroupofBn.Paritycheckmatrix–
一致性檢驗(yàn)矩陣Letm<nandr=n–m,thefollowingn
rBooleanmatrixiscalledaparitycheckmatrix.EncodingfunctionDefineanencodingfunctioneH:Bm
BnIfb=b1b2…bm,letx=eH(b)=b1b2…bm
x1x2…xr,where(1)eH:Bm
Bn
inmatrixformatTheorem6Letx=y1y2…ymx1…xr
Bn.Thenx*H=0
ifandonlyifx=eH(b)forsomeb
Bm.Proof:x*H=0
x=eH(b)forsomeb
BmSupposethatx*H=0Proof:x*H=0
x=eH(b)forsomeb
Bm
Notethatxi+xi=0.SoaddxitoithrowandgetLettingb1=y1,b2=y2,...,bm=ym,weseethatx1,x2,...,xrsatisfytheequationsin(l).Thusb=b1b2…bm
Bmandx=eH(b)Proof:x*H=0
x=eH(b)forsomeb
Bm
Converselyifx=eH(b),theequationsin(l)canberewrittenbyaddingxitobothsidesoftheithequation,i=l,2,...,n,aswhichshowsx*H=0Q.E.D.Corollary2eH(Bm)={eH(b)|b
Bm}isasubgroupofBn
Proof:TheresultfollowsfromtheobservationthateH(Bm)=ker(fH)andfromCorollaryl.ThuseHisagroupcode.Example11Letm=2,n=5,andDeterminethegroupcodeeH:B2B5.Solution11Homework19,23,25,27P412Thanksforyourattention!Comingupnext…DecodingandErrorCorrectionDecodingandErrorCorrection譯碼與糾錯(cuò)BnBr
Bn/N{xN|x∈Bn}={(x*H=y|y∈Br)}N={x=e(b),b∈Bm}={(x*H=0)|x∈Bn
}fH
(x)
=x*HfR
(x)
=[x]R=
xNxRyifonlyifx-1y∈NfH
(x)=fH
(y)F(xN)=fH
(x)
=x*HDecodingFunction–譯碼函數(shù)Consideran(m,n)encodingfunction e:Bm
Bn.Oncetheencodedwordx=e(b)
Bn,forb
Bm,isreceivedasthewordxt,wearefacedwiththeproblemofidentifyingthewordbthatwastheoriginalmessage.DecodingFunctionConsideran(m,n)encodingfunction e:Bm
Bn.Anontofunctiond:Bn
Bmiscalledan(n,m)decodingfunctionassociatedwithe(與e關(guān)聯(lián)的譯碼函數(shù))ifd(xt)=b'
Bmissuchthatwhenthetransmissionchannelhasnonoise,thenb'=b,thatis,d
o
e=1BmDecodingFunctionThedecodingfunctiondisrequiredtobeontosothateveryreceivedwordcanbedecodedtogiveawordinBm.Itdecodesproperlyreceivedwordscorrectly,butthedecodingofimproperlyreceivedwordsmayormaynotbecorrect.Example1ConsidertheparitycheckcodethatisdefinedinExample2ofSection11.1Definethedecodingfunctiond:Bm+1
Bm.Ify=yly2…ymym+l
Bm+1,thend(y)=yly2…ymObservethatifb=blb2…bm
Bm,then(d
o
e)(b)=d(e(b))=bsod
o
e=1BmForaconcreteexample,letm=4.Thend(10010)=1001andd(11001)=1100DecodingfunctionLetebean(m,n)encodingfunctionandletdbean(n,m)decodingfunctionassociatedwithe.Thepair(e,d)issaidtocorrectkorfewererrors
ifwheneverx=e(b)istransmittedcorrectlyorwithkorfewererrorsandxtisreceived,thend(xt)=b.Thusxtisdecodedasthecorrectmessageb.Example2Considerthe(m,3m)encodingfunctiondefinedinExample3ofSection11.1.Definethedecodingfunctiond:Bm
B3m.Lety=y1y2…ymym+1…y2my2m+1…y3m,Thend(y)=z1z2…zmwhereE.g.xt=011011111,thend(xt)=011Maximumlikelihoodtechnique–極大似然技術(shù)SinceBmhas2melements,thereare2mcodewordsinBn.Listitasx(1),x(2),...,x(2m)Ifthereceivedwordisxt,wecompute(x(i),xt)for1≤i≤2m,andchoosethefirstcodeword,sayitisx(s),suchthatMaximumlikelihooddecodingfunctionThatis,x(s)isacodewordthatisclosesttoxtandthefirstinthelist.Ifx(s)=e(b),wedefinethemaximumlikelihooddecodingfunction
dassociatedwithebyd(xt)=bTheorem1Supposethateisan(m,n)encodingfunctionanddisamaximumlikelihooddecodingfunctionassociatedwithe.Then(e,d)cancorrectkorfewererrorsifandonlyiftheminimumdistanceofeisatleast2k+l.Example3
Howmanyerrorscan(e,d)correct?The(3,8)encodingfunctione:B3
B8andletdbean(8,3)maximumlikelihooddecodingfunctionassociatedwithe.ConstructingmaximumlikelihooddecodingfunctionassociatedwithagivengroupcodeTheorem2IfKisafinitesubgroupofagroupG,theneveryleftcosetofKinGhasexactlyasmanyelementsasK.ProofLetaKbealeftcosetofKinG,wherea
G.Considerthefunctionf:K
aKdefinedbyf(k)=ak,fork
K.Weshowthatfisonetooneandonto.Toshowthatfisonetoone,weassumethatf(kl)=f(k2),kl,k2
K.Thenakl=ak2Leftmultiplya-1,wehavekl=k2ProofToshowthatfisonto,letbbeanarbitraryelementinaK.Thenb=akforsomek
K.Wenowhavef(k)=ak=bsofisonto.Sincefisonetooneandonto,KandaKhavethesamenumberofelements.Q.E.DGroupcodewordLete:Bm
Bnbean(m,n)encodingfunctionthatisagroupcode.ThusthesetNofcodewordsinBnisasubgroupofBnwhoseorderis2m,sayN={x(1),x(2),...,x(2m)}.Cosetleader–陪集頭Supposethatthecodewordx=e(b)istransmittedandthatthewordxtisreceived.Theleftcosetofxtisxt
N={1,2,...,2m}wherei=xt
x(i)ifjisacosetmemberwithsmallestweight,thenx(j)mustbeacodewordthatisclosesttoxt.Anelementj,havingsmallestweight,iscalledacosetleader.ProcedureForobtainingamaximumlikelihooddecodingfunctiondassociatedwithagivengroupcodee:Bn
Bm
ProcedureStep1:DeterminealltheleftcosetsofN=e(Bm)inBnStep2:Foreachcoset,findacosetleader(awordofleastweight).Step3:Ifthewordxtisreceived,determinethecosetofNtowhichxtbelongs.Step4:LetbeacosetleaderforthecosetdeterminedinStep3.Computex=xt
.Ifx=e(b),weletd(xt)=b.Thatis,wedecodextasb.DecodingtableConstructingadecodingtable,eachrowisaleftcosetofNwiththefirstelement(i)thecosetleader.DecodingtableIfwereceivethewordxt,welocateitinthetable.IfxistheelementofNthatisatthetopofthecolumncontainingxt,thenxisthecodewordclosesttoxt.ifx=e(b),thend(xt)=b.Example4Considerthe(3,6)groupcodeN={000000,001100,010011,011111,100101,101001,110110,111010}={x(1),x(2),...,x(8)}.Example4
Constructingdecodingtable:==============================================================000000001100010011011111100101101001110110111010--------------------------------------------------------------000001001101010010111110100100101000110111111011000010001110010001011101100111101011110100111000000100001000010111011011100001101101110010111110010000011100000011001111110101111001100110101010100000101100110011111111000101001001010110011010000110001010010101011001100011101111110000111100010100011000000111001011110001111101100010101110==============================================================001010000110011001010101101111100011111100110000SimplifieddecodingtechniqueSupposethatthe(m,n)groupcodeiseH:Bm
Bn
,whereHisagivenparitycheckmatrix.SimplifieddecodingtechniqueThenthefunctionfH:Bn
BrdefinedbyfH(x)=x*H,x
BnisahomomorphismfromthegroupBntothegroupBr.Theorem3Ifm,n,r,H,andfHareasdefined,thenfHisonto.ProofLetb=b1b2…brbeanyelementinBr.Lettingx=01…0mb1b2…br
Thenx*H=b.ThusfH(x)=b,sofHisonto.Q.E.DSyndrome–特征值ItfollowsfromCorollarylofSection9.5thatBrandBn/Nareisomorphic,whereN={x
Bn|x*H=0}=ker(fH)=eH(Bm)undertheisomorphismg:Bn/N
Brdefinedbyg(xN)=fH(x)=x*HTheelementx*HiscalledthesyndromeofxTheorem4LetxandybeelementsinBn.ThenxandylieinthesameleftcosetofNinBn
ifandonlyiffH(x)=fH(y)ifandonlyiftheyhavethesamesyndrome.ProofItfollowsfromTheorem4ofSection9.5thatxandylieinthesameleftcosetofNinBnifandonlyifxy=(-x)y
N.SinceN=ker(fH),xy
NifandonlyiffH(x
y)=0BrfH(x)
fH(y)=0BrfH(x)=fH(y)Q.E.D.DecodingprocedureSupposethatwecomputethesyndromeofeachcosetleader.Ifthewordxtisreceived,wealsocomputefH(xt),thesyndromeofxt.BycomparingfH(xt)andth
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村農(nóng)村土地流轉(zhuǎn)服務(wù)平臺(tái)建設(shè)方案
- 工地物料盤點(diǎn)流程優(yōu)化方案
- 2025年安徽醫(yī)科大學(xué)附屬安慶第一人民醫(yī)院第二批公開招聘工作人員8人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年南昌大學(xué)第一附屬醫(yī)院醫(yī)學(xué)科研公共服務(wù)中心實(shí)驗(yàn)技術(shù)員招聘1人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年臨沂郯城縣部分醫(yī)療衛(wèi)生事業(yè)單位招募見習(xí)人員(16人)筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年2026首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院面向應(yīng)屆畢業(yè)生(含博士后等)招聘146人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年2026天津市衛(wèi)生健康委員會(huì)所屬天津市職業(yè)病防治院(天津市工人醫(yī)院)招聘26人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 六年級(jí)數(shù)學(xué)上冊(cè)數(shù)學(xué)素養(yǎng)綜合進(jìn)階與結(jié)構(gòu)化復(fù)習(xí)方案
- 南方航空股份有限公司關(guān)聯(lián)交易制度
- 浙江國(guó)企招聘2025嘉興市世紀(jì)交通工程咨詢監(jiān)理有限公司招聘28人筆試參考題庫(kù)附帶答案詳解
- 紅外線桑拿毯行業(yè)跨境出海項(xiàng)目商業(yè)計(jì)劃書
- 2025安徽職高單招試題及答案
- 《文獻(xiàn)檢索與科技論文寫作入門》課件(共八章)
- 2025至2030鑄鐵產(chǎn)業(yè)行業(yè)市場(chǎng)深度研究及發(fā)展前景投資可行性分析報(bào)告
- 機(jī)電設(shè)備安裝工程中電梯系統(tǒng)全生命周期質(zhì)量管控體系
- 碎石樁施工技術(shù)
- 2025年政府采購(gòu)和招標(biāo)法考試試題及答案
- 2025中考九年級(jí)語(yǔ)文《標(biāo)點(diǎn)符號(hào)》復(fù)習(xí)練習(xí)題
- 智能化建筑機(jī)器人施工方案和技術(shù)措施
- 征兵體檢外科標(biāo)準(zhǔn)
- 4輸變電工程施工質(zhì)量驗(yàn)收統(tǒng)一表式(電纜工程電氣專業(yè))-2024年版
評(píng)論
0/150
提交評(píng)論