下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
習題五5-1振動和波動有什么區(qū)別和聯(lián)系?平面簡諧波動方程和簡諧振動方程有什么不同?又有什么聯(lián)系?振動曲線和波形曲線有什么不同?解:(1)振動是指一個孤立的系統(tǒng)(也可是介質(zhì)中的一個質(zhì)元)在某固定平衡位置附近所做的往復運動,系統(tǒng)離開平衡位置的位移是時間的周期性函數(shù),即可表示為;波動是振動在連續(xù)介質(zhì)中的傳播過程,此時介質(zhì)中所有質(zhì)元都在各自的平衡位置附近作振動,因此介質(zhì)中任一質(zhì)元離開平衡位置的位移既是坐標位置,又是時間的函數(shù),即.(2)在諧振動方程中只有一個獨立的變量時間,它描述的是介質(zhì)中一個質(zhì)元偏離平衡位置的位中有兩個獨立變量,即坐標位置和時間,它描述的移隨時間變化的規(guī)律;平面諧波方程是介質(zhì)中所有質(zhì)元偏離平衡位置的位移隨坐標和時間變化的規(guī)律.當諧波方程中的坐標位置給定后,即可得到該點的振動方程,而波源持續(xù)不斷地振動又是產(chǎn)生波動的必要條件之一.(3)振動曲線描述的是一個質(zhì)點的位移隨時間變化的規(guī)律,因此,其縱軸為,橫軸為;波動描述的是介質(zhì)中所有質(zhì)元的位移隨位置,隨時間變化的規(guī)律,其縱軸為,橫軸為.曲線每一幅圖只能給出某一時刻質(zhì)元的位移隨坐標位置變化的規(guī)律,即只能給出某一時刻的波形圖,不同時刻的波動曲線就是不同時刻的波形圖.5-2波動方程=cos[()+]中的表示什么?如果改寫為=cos(),又是什么意思?如果和均增加,但相應的[()+]的值不變,由此能從波動方程說明什么?解:波動方程中的表示了介質(zhì)中坐標位置為的質(zhì)元的振動落后于原點的時間;則表示處質(zhì)元比原點落后的振動位相;設時刻的波動方程為則時刻的波動方程為其表示在時刻,位置處的振動狀態(tài),經(jīng)過后傳播到處.所以在中,當,均增加時,距離,說明的值不會變化,而這正好說明了經(jīng)過時間,波形即向前傳播了的描述的是一列行進中的波,故謂之行波方程.5-3波在介質(zhì)中傳播時,為什么介質(zhì)元的動能和勢能具有相同的位相,而彈簧振子的動能和勢能卻沒有這樣的特點?解:我們在討論波動能量時,實際上討論的是介質(zhì)中某個小體積元內(nèi)所有質(zhì)元的能量.波動動能當然是指質(zhì)元振動動能,其與振動速度平方成正比,波動勢能則是指介質(zhì)的形變勢能.形變勢能由介質(zhì)的相對形變量(即應變量)決定.如果取波動方程為的平方成正比.由波動曲線圖(題5-3圖)可知,在波峰,波谷處,波動動能有極小(此處振動速度為零),而在該處的應變也為極小(該處),所以在波峰,波谷處波動勢能也為極小;,則相對形變量(即應變量)為.波動勢能則是與在平衡位置處波動動能為極大(該處振動速度的極大),而在該處的應變也是最大(該處是曲線的拐點),當然波動勢能也為最大.這就說明了在介質(zhì)中波動動能與波動勢能是同步變化的,即具有相同的量值.題5-3圖對于一個孤立的諧振動系統(tǒng),是一個孤立的保守系統(tǒng),機械能守恒,即振子的動能與勢能之和保持為一個常數(shù),而動能與勢能在不斷地轉(zhuǎn)換,所以動能和勢能不可能同步變化.5-4波動方程中,坐標軸原點是否一定要選在波源處?=0時刻是否一定是波源開始振動的時刻?波動方程寫成=cos()時,波源一定在坐標原點處嗎?在什么前提下波動方程才能寫成這種形式?解:由于坐標原點和開始計時時刻的選全完取是一種主觀行為,所以在波動方程中,坐標原點不一定要選在波源處,同樣,的時刻也不一定是波源開始振動的時刻;當波動方程寫成時,坐標原點也不一定是選在波源所在處的.因為在此處對于波源的含義已做了拓展,即在寫波動方程時,我們可以把介質(zhì)中某一已知點的振動視為波源,只要把振動方程為已知的點選為坐標原點,即可得題示的波動方程.5-5在駐波的兩相鄰波節(jié)間的同一半波長上,描述各質(zhì)點振動的什么物理量不同,什么物理量相同?解:取駐波方程為,則可知,在相鄰兩波節(jié)中的同一半波長上,描述各質(zhì)點的振幅是不相同的,各質(zhì)點的振幅是隨位置按余弦規(guī)律變化的,即振幅變化規(guī)律可表示為.而在這同一半波長上,各質(zhì)點的振動位相則是相同的,即以相鄰兩波節(jié)的介質(zhì)為一段,同一段介質(zhì)內(nèi)各質(zhì)點都有相同的振動位相,而相鄰兩段介質(zhì)內(nèi)的質(zhì)點振動位相則相反.5-6波源向著觀察者運動和觀察者向波源運動都會產(chǎn)生頻率增高的多普勒效應,這兩種情況有何區(qū)別?解:波源向著觀察者運動時,波面將被擠壓,波在介質(zhì)中的波長,將被壓縮變短,(如題5-6圖所示),因而觀察者在單位時間內(nèi)接收到的完整數(shù)目()會增多,所以接收頻率增高;而觀察者向著波源運動時,波面形狀不變,但觀察者測到的波速增大,即,因而單位時間內(nèi)通過觀察者完整波的數(shù)目也會增多,即接收頻率也將增高.簡單地說,前者是通過壓縮波面(縮短波長)使頻率增高,后者則是觀察者的運動使得單位時間內(nèi)通過的波面數(shù)增加而升高頻率.題5-6圖多普勒效應5-7一平面簡諧波沿軸負向傳播,波長=1.0m,原點處質(zhì)點的振動頻率為=2.0Hz,振幅=0.1m,且在=0時恰好通過平衡位置向軸負向運動,求此平面波的波動方程.解:由題知時原點處質(zhì)點的振動狀態(tài)為則有,故知原點的振動初相為,取波動方程為5-8已知波源在原點的一列平面簡諧波,波動方程為=cos(),其中,,為正值恒量.求:(1)波的振幅、波速、頻率、周期與波長;(2)寫出傳播方向上距離波源為處一點的振動方程;(3)任一時刻,在波的傳播方向上相距為的兩點的位相差.解:(1)已知平面簡諧波的波動方程()將上式與波動方程的標準形式比較,可知:波振幅為,頻率,波長,波速,波動周期.(2)將代入波動方程即可得到該點的振動方程(3)因任一時刻同一波線上兩點之間的位相差為將,及代入上式,即得.5-9沿繩子傳播的平面簡諧波的波動方程為=(10(1)波的波速、頻率和波長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級科學教學反思與年度總結(jié)范文
- 六年級語文倡議書寫作教學方案
- 2025福建廈門市集美區(qū)幸福幼兒園招聘2人參考考試試題及答案解析
- 2026中國科協(xié)所屬單位招聘應屆高校畢業(yè)生33人參考筆試題庫附答案解析
- 人防物防技防管理操作手冊
- 小學生語文作業(yè)設計及調(diào)查報告
- 中學生防溺水安全主題征文
- 夏季高溫職業(yè)健康安全教育資料
- 高校學術會議組織流程詳解
- 小學一年級第一學期體育教周教案
- 圖木舒克市數(shù)字經(jīng)濟產(chǎn)業(yè)發(fā)展概況及未來投資可行性研究報告
- 《電力系統(tǒng)短路電流分析及其計算方法》課件
- JJF(紡織) 028-2024 耐汗?jié)n色牢度儀校準規(guī)范
- 2025年南京鐵道職業(yè)技術學院單招職業(yè)技能測試題庫附答案
- 城市雨水收集與利用
- 電氣工程師2025年度計劃
- 彩鋼夾芯板墻面安裝施工工藝-共3種方案
- 《城市防疫專項規(guī)劃編制導則》
- 數(shù)字與圖像處理-終結(jié)性考核-國開(SC)-參考資料
- 初中七年級主題班會:成為自己的主人(課件)
- 歷史建筑測繪建檔技術規(guī)范
評論
0/150
提交評論