2022-2023學(xué)年遼寧省阜新市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022-2023學(xué)年遼寧省阜新市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022-2023學(xué)年遼寧省阜新市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022-2023學(xué)年遼寧省阜新市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022-2023學(xué)年遼寧省阜新市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年遼寧省阜新市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3

2.下列關(guān)系正確的是()。A.

B.

C.

D.

3.

4.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件

5.

6.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

7.

8.

9.下列等式中正確的是()。A.

B.

C.

D.

10.

11.

A.1

B.

C.0

D.

12.單位長度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。

A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)13.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件

14.設(shè)y=2^x,則dy等于().

A.x.2x-1dx

B.2x-1dx

C.2xdx

D.2xln2dx

15.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2

16.

A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散17.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x

B.y=C1e-3x+C2e4x

C.y=C1e3x+C2e4x

D.y=C1e-3x+C2e-4x

18.

19.

20.當(dāng)x→0時(shí),x2是x-ln(1+x)的().

A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小二、填空題(20題)21.

22.23.設(shè)z=x2y2+3x,則24.設(shè)f(x)=esinx,則=________。25.26.設(shè)z=x3y2,則27.28.29.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.

30.

31.y''-2y'-3y=0的通解是______.

32.

33.

34.

35.設(shè)y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.

36.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.

37.

38.

39.

40.三、計(jì)算題(20題)41.求微分方程的通解.42.

43.44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

46.

47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

48.將f(x)=e-2X展開為x的冪級(jí)數(shù).49.50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

51.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則56.求曲線在點(diǎn)(1,3)處的切線方程.57.58.證明:59.

60.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.四、解答題(10題)61.

62.設(shè)f(x)=x-5,求f'(x)。

63.

64.

65.

66.

67.

68.69.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)某產(chǎn)品需求函數(shù)為

求p=6時(shí)的需求彈性,若價(jià)格上漲1%,總收入增加還是減少?

六、解答題(0題)72.

參考答案

1.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.

2.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。

3.C

4.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。

5.C

6.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。

7.D

8.A

9.B

10.B

11.B

12.A

13.D

14.D南微分的基本公式可知,因此選D.

15.D

16.C解析:

17.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x

18.A解析:

19.D

20.C解析:本題考查的知識(shí)點(diǎn)為無窮小階的比較.

由于

可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮?。蕬?yīng)選C.

21.22.本題考查的知識(shí)點(diǎn)為重要極限公式.23.2xy(x+y)+3本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

由于z=x2y2+3x,可知

24.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

25.解析:26.12dx+4dy;本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

由于z=x3y2可知,均為連續(xù)函數(shù),因此

27.-24.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:

28.

29.本題考查的知識(shí)點(diǎn)為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點(diǎn)向式方程可知所求直線方程為

30.00解析:31.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.

32.

解析:

33.-1

34.0

35.1/(1+ey)本題考查了隱函數(shù)的求導(dǎo)的知識(shí)點(diǎn)。

36.本題考查的知識(shí)點(diǎn)為直線的方程和平面與直線的關(guān)系.

由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知

為所求.

37.2x-4y+8z-7=0

38.0<k≤10<k≤1解析:

39.

40.31/16;2本題考查了函數(shù)的最大、最小值的知識(shí)點(diǎn).

f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.

41.42.由一階線性微分方程通解公式有

43.

44.

列表:

說明

45.由二重積分物理意義知

46.

47.

48.

49.

50.函數(shù)的定義域?yàn)?/p>

注意

51.

52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

54.

55.由等價(jià)無窮小量的定義可知56.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

57.

58.

59.

60.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論