版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年內(nèi)蒙古自治區(qū)興安盟普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
2.
若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
3.
4.
5.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
6.下列命題中正確的為
A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0
B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)
C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)
D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0
7.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點(diǎn)
B.xo為f(x)的極小值點(diǎn)
C.xo不為f(x)的極值點(diǎn)
D.xo可能不為f(x)的極值點(diǎn)
8.A.A.5B.3C.-3D.-5
9.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面
10.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
11.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
12.
13.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
14.
15.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
16.
17.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x
B.x3
C.(1/3)x3+C
D.3x3+C
18.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
19.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
20.
二、填空題(20題)21.
22.23.
24.
25.
26.
27.微分方程y'=ex的通解是________。
28.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.29.
30.曲線y=x/2x-1的水平漸近線方程為__________。
31.
32.
33.34.微分方程y''+6y'+13y=0的通解為______.
35.
36.
37.
38.
39.設(shè)y=2x+sin2,則y'=______.
40.
三、計(jì)算題(20題)41.證明:
42.
43.
44.將f(x)=e-2X展開為x的冪級(jí)數(shù).45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.46.求曲線在點(diǎn)(1,3)處的切線方程.47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.
50.求微分方程y"-4y'+4y=e-2x的通解.
51.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
52.53.54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.
56.求微分方程的通解.57.
58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)61.
62.設(shè)
63.
64.
65.66.設(shè)y=x+arctanx,求y'.
67.
68.(本題滿分8分)
69.
70.
五、高等數(shù)學(xué)(0題)71.求
的極值。
六、解答題(0題)72.計(jì)算其中D是由y=x,x=0,y=1圍成的平面區(qū)域.
參考答案
1.C
2.B
3.D
4.A
5.C
6.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。
7.A
8.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒有定義,因此
x=-3為f(x)的間斷點(diǎn),故選C。
9.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
10.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
11.B
12.C
13.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
14.C解析:
15.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
16.A解析:
17.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。
18.C
19.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
20.D解析:
21.
本題考查的知識(shí)點(diǎn)為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.
這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.
22.
23.
24.(1/3)ln3x+C
25.
26.y=Cy=C解析:
27.v=ex+C28.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知
29.
30.y=1/2
31.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
32.2m33.134.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
35.36.由可變上限積分求導(dǎo)公式可知
37.eyey
解析:
38.39.2xln2本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本題中常見的錯(cuò)誤有
(sin2)'=cos2.
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為一個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
40.
41.
42.
43.
44.
45.
46.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
47.
48.由二重積分物理意義知
49.
50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
51.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
52.
53.
54.
55.
則
56.57.由一階線性微分方程通解公式有
58.由等價(jià)無窮小量的定義可知59.函數(shù)的定義域?yàn)?/p>
注意
60.
列表:
說明
61.
62.
解析:本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
63.
64.解
65.
66.
67.68.本題考查的知識(shí)點(diǎn)為定積分的計(jì)算.
69.
70.
71.
∴I"(x)=x(x一1)=0;駐點(diǎn)x=01∵I""(x)=2x一1;I""(0)=一1<0;I""(1)=1>0∴x=0取極大值I(0)=0∴x=1取極小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026福建水投集團(tuán)泰寧水務(wù)有限公司招聘2人考試重點(diǎn)題庫(kù)及答案解析
- 2026年齊齊哈爾高等師范專科學(xué)校單招綜合素質(zhì)筆試模擬試題含詳細(xì)答案解析
- 2026年鄭州電子信息職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考題庫(kù)含詳細(xì)答案解析
- 2026年江西旅游商貿(mào)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考題庫(kù)及答案詳細(xì)解析
- 2026年上海杉達(dá)學(xué)院?jiǎn)握新殬I(yè)技能考試備考題庫(kù)含詳細(xì)答案解析
- 2026年江西科技學(xué)院?jiǎn)握新殬I(yè)技能考試模擬試題含詳細(xì)答案解析
- 2026年湖北生物科技職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題含詳細(xì)答案解析
- 2026山西省人民醫(yī)院招聘博士研究生50人考試參考試題及答案解析
- 2026年湖南國(guó)防工業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬試題含詳細(xì)答案解析
- 2026年麗江師范高等專科學(xué)校單招職業(yè)技能考試參考題庫(kù)含詳細(xì)答案解析
- 尼帕病毒病預(yù)防控制技術(shù)指南總結(jié)2026
- 2026屆大灣區(qū)普通高中畢業(yè)年級(jí)聯(lián)合上學(xué)期模擬考試(一)語(yǔ)文試題(含答案)(含解析)
- 初高中生物知識(shí)銜接課件
- 2026國(guó)家國(guó)防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫(kù)及完整答案詳解一套
- 道路隔離護(hù)欄施工方案
- (2025年)軍隊(duì)文職考試面試真題及答案
- 新版-八年級(jí)上冊(cè)數(shù)學(xué)期末復(fù)習(xí)計(jì)算題15天沖刺練習(xí)(含答案)
- 2025智慧城市低空應(yīng)用人工智能安全白皮書
- 云南師大附中2026屆高三月考試卷(七)地理
- 通信管道施工質(zhì)量控制方案
- 邁瑞售后管理制度規(guī)范
評(píng)論
0/150
提交評(píng)論