版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再從余下的2個(gè)球中任意摸出1個(gè)球則兩次摸到的球的顏色不同的概率為()A. B. C. D.2.如圖,已知△ABC,△DCE,△FEG,△HGI是4個(gè)全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點(diǎn)Q,則QI=()A.1 B. C. D.3.下列手機(jī)手勢(shì)解鎖圖案中,是軸對(duì)稱圖形的是()A. B. C. D.4.若一個(gè)正多邊形的每個(gè)內(nèi)角為150°,則這個(gè)正多邊形的邊數(shù)是()A.12 B.11 C.10 D.95.的算術(shù)平方根為()A. B. C. D.6.關(guān)于的方程有實(shí)數(shù)根,則滿足()A. B.且 C.且 D.7.某工廠第二季度的產(chǎn)值比第一季度的產(chǎn)值增長(zhǎng)了x%,第三季度的產(chǎn)值又比第二季度的產(chǎn)值增長(zhǎng)了x%,則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長(zhǎng)了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%8.已知一次函數(shù)y=(k﹣2)x+k不經(jīng)過第三象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<29.一次函數(shù)的圖象上有點(diǎn)和點(diǎn),且,下列敘述正確的是A.若該函數(shù)圖象交y軸于正半軸,則B.該函數(shù)圖象必經(jīng)過點(diǎn)C.無論m為何值,該函數(shù)圖象一定過第四象限D(zhuǎn).該函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸正半軸有交點(diǎn)10.一組數(shù)據(jù)是4,x,5,10,11共五個(gè)數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.1111.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆?,且AB⊥CD.入口K位于中點(diǎn),園丁在苗圃圓周或兩條交叉過道上勻速行進(jìn).設(shè)該園丁行進(jìn)的時(shí)間為x,與入口K的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則該園丁行進(jìn)的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C12.某校有35名同學(xué)參加眉山市的三蘇文化知識(shí)競(jìng)賽,預(yù)賽分?jǐn)?shù)各不相同,取前18名同學(xué)參加決賽.其中一名同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,只需要知道這35名同學(xué)分?jǐn)?shù)的(
).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復(fù)原的原則》《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)請(qǐng)根據(jù)上圖完成這個(gè)推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.14.等腰三角形一邊長(zhǎng)為8,另一邊長(zhǎng)為5,則此三角形的周長(zhǎng)為_____.15.將半徑為5,圓心角為144°的扇形圍成一個(gè)圈錐的側(cè)面,則這個(gè)圓錐的底面半徑為.16.計(jì)算:.17.分解因式:m3–m=_____.18.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個(gè)頂點(diǎn)都在Rt△ABC的邊上,當(dāng)矩形DEFG的面積最大時(shí),其對(duì)角線的長(zhǎng)為_______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在方格紙中.(1)請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使,,并求出點(diǎn)坐標(biāo);(2)以原點(diǎn)為位似中心,相似比為2,在第一象限內(nèi)將放大,畫出放大后的圖形;(3)計(jì)算的面積.20.(6分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)C分別在x軸和y軸的正半軸上,OA=6,OC=4,以O(shè)A,OC為鄰邊作矩形OABC,動(dòng)點(diǎn)M,N以每秒1個(gè)單位長(zhǎng)度的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)N沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí),過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.(1)直接寫出點(diǎn)B的坐標(biāo)為,直線OB的函數(shù)表達(dá)式為;(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式;并求t為何值時(shí),S有最大值,并求出最大值.21.(6分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點(diǎn)E為AB的中點(diǎn),DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長(zhǎng).22.(8分)如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C,過點(diǎn)C作CD∥x軸,交拋物線的對(duì)稱軸于點(diǎn)D,連結(jié)BD,已知點(diǎn)A坐標(biāo)為(-1,0).求該拋物線的解析式;求梯形COBD的面積.23.(8分)已知邊長(zhǎng)為2a的正方形ABCD,對(duì)角線AC、BD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.24.(10分)一個(gè)不透明的口袋中裝有2個(gè)紅球、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.25.(10分)已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.(1)用含x的代數(shù)式表示線段CF的長(zhǎng);(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).26.(12分)在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長(zhǎng)與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點(diǎn)P為AB邊上的定點(diǎn),且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動(dòng)點(diǎn)E,當(dāng)?shù)闹凳嵌嗌贂r(shí),△PDE的周長(zhǎng)最小?如圖(3),點(diǎn)Q是邊AB上的定點(diǎn),且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F,連接CF,G為CF的中點(diǎn),M、N分別為線段QF和CD上的動(dòng)點(diǎn),且始終保持QM=CN,MN與DF相交于點(diǎn)H,請(qǐng)問GH的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.27.(12分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線.交BC于點(diǎn)E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當(dāng)∠B=______度時(shí),以O(shè),D,E,C為頂點(diǎn)的四邊形是正方形.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計(jì)算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點(diǎn)睛】掌握分類討論的方法是本題解題的關(guān)鍵.2、D【解析】解:∵△ABC、△DCE、△FEG是三個(gè)全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點(diǎn)睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關(guān)鍵.3、D【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的定義進(jìn)行判斷.【詳解】A.既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,所以A錯(cuò)誤;B.既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,所以B錯(cuò)誤;C.是中心對(duì)稱圖形,不是軸對(duì)稱圖形,所以C錯(cuò)誤;D.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,所以D正確.【點(diǎn)睛】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的定義,熟練掌握定義是本題解題的關(guān)鍵.4、A【解析】
根據(jù)正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ),得到這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個(gè)正多邊形的每個(gè)內(nèi)角為150°,∴這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,∴這個(gè)正多邊形的邊數(shù)==1.故選:A.【點(diǎn)睛】本題考查了正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).5、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術(shù)平方根即可.詳解:∵=2,而2的算術(shù)平方根是,∴的算術(shù)平方根是,故選B.點(diǎn)睛:此題主要考查了算術(shù)平方根的定義,解題時(shí)應(yīng)先明確是求哪個(gè)數(shù)的算術(shù)平方根,否則容易出現(xiàn)選A的錯(cuò)誤.6、A【解析】
分類討論:當(dāng)a=5時(shí),原方程變形一元一次方程,有一個(gè)實(shí)數(shù)解;當(dāng)a≠5時(shí),根據(jù)判別式的意義得到a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當(dāng)a=5時(shí),原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時(shí),△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,所以a的取值范圍為a≥1.故選A.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了一元二次方程的定義.7、D【解析】設(shè)第一季度的原產(chǎn)值為a,則第二季度的產(chǎn)值為,第三季度的產(chǎn)值為,則則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長(zhǎng)了故選D.8、D【解析】
直線不經(jīng)過第三象限,則經(jīng)過第二、四象限或第一、二、四象限,當(dāng)經(jīng)過第二、四象限時(shí),函數(shù)為正比例函數(shù),k=0當(dāng)經(jīng)過第一、二、四象限時(shí),,解得0<k<2,綜上所述,0≤k<2。故選D9、B【解析】
利用一次函數(shù)的性質(zhì)逐一進(jìn)行判斷后即可得到正確的結(jié)論.【詳解】解:一次函數(shù)的圖象與y軸的交點(diǎn)在y軸的正半軸上,則,,若,則,故A錯(cuò)誤;
把代入得,,則該函數(shù)圖象必經(jīng)過點(diǎn),故B正確;
當(dāng)時(shí),,,函數(shù)圖象過一二三象限,不過第四象限,故C錯(cuò)誤;
函數(shù)圖象向上平移一個(gè)單位后,函數(shù)變?yōu)椋援?dāng)時(shí),,故函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸負(fù)半軸有交點(diǎn),故D錯(cuò)誤,
故選B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是熟練掌握一次函數(shù)的性質(zhì),靈活應(yīng)用這些知識(shí)解決問題,屬于中考??碱}型.10、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點(diǎn):3.眾數(shù);3.算術(shù)平均數(shù).11、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項(xiàng)進(jìn)行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,看懂圖形,認(rèn)真分析是解題的關(guān)鍵.12、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個(gè)不同的成績(jī)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個(gè)數(shù),故只要知道自己的成績(jī)和中位數(shù)就可以知道是否進(jìn)入決賽了.故選B.點(diǎn)睛:本題考查了統(tǒng)計(jì)量的選擇,以及中位數(shù)意義,解題的關(guān)鍵是正確的求出這組數(shù)據(jù)的中位數(shù)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質(zhì):矩形的對(duì)角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點(diǎn)睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用矩形的對(duì)角線把矩形分成面積相等的兩部分這個(gè)性質(zhì),屬于中考??碱}型.14、18或21【解析】當(dāng)腰為8時(shí),周長(zhǎng)為8+8+5=21;當(dāng)腰為5時(shí),周長(zhǎng)為5+5+8=18.故此三角形的周長(zhǎng)為18或21.15、1【解析】考點(diǎn):圓錐的計(jì)算.分析:求得扇形的弧長(zhǎng),除以1π即為圓錐的底面半徑.解:扇形的弧長(zhǎng)為:=4π;這個(gè)圓錐的底面半徑為:4π÷1π=1.點(diǎn)評(píng):考查了扇形的弧長(zhǎng)公式;圓的周長(zhǎng)公式;用到的知識(shí)點(diǎn)為:圓錐的弧長(zhǎng)等于底面周長(zhǎng).16、【解析】
此題涉及特殊角的三角函數(shù)值、零指數(shù)冪、二次根式化簡(jiǎn),絕對(duì)值的性質(zhì).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.【詳解】原式.【點(diǎn)睛】此題考查特殊角的三角函數(shù)值,實(shí)數(shù)的運(yùn)算,零指數(shù)冪,絕對(duì)值,解題關(guān)鍵在于掌握運(yùn)算法則.17、m(m+1)(m-1)【解析】
根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【詳解】解:故答案為:m(m+1)(m-1).【點(diǎn)睛】本題考查因式分解,掌握因式分解的技巧是解題關(guān)鍵.18、或【解析】
分兩種情形畫出圖形分別求解即可解決問題【詳解】情況1:如圖1中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時(shí),矩形的面積最大,最大值為3,此時(shí)對(duì)角線=.情況2:如圖2中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時(shí),矩形的面積最大為3,此時(shí)對(duì)角線==∴矩形面積的最大值為3,此時(shí)對(duì)角線的長(zhǎng)為或故答案為或【點(diǎn)睛】本題考查相似三角形的應(yīng)用、矩形的性質(zhì)、二次函數(shù)的最值等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;.(2)作圖見解析;(3)1.【解析】分析:(1)直接利用A,C點(diǎn)坐標(biāo)得出原點(diǎn)位置進(jìn)而得出答案;(2)利用位似圖形的性質(zhì)即可得出△A'B'C';(3)直接利用(2)中圖形求出三角形面積即可.詳解:(1)如圖所示,即為所求的直角坐標(biāo)系;B(2,1);(2)如圖:△A'B'C'即為所求;(3)S△A'B'C'=×4×8=1.點(diǎn)睛:此題主要考查了位似變換以及三角形面積求法,正確得出對(duì)應(yīng)點(diǎn)位置是解題的關(guān)鍵.畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長(zhǎng)位似中心和關(guān)鍵點(diǎn);③根據(jù)位似比,確定位似圖形的關(guān)鍵點(diǎn);④順次連接上述各點(diǎn),得到放大或縮小的圖形.20、(1),;(2),1,1.【解析】
(1)根據(jù)四邊形OABC為矩形即可求出點(diǎn)B坐標(biāo),設(shè)直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點(diǎn)的坐標(biāo)為,表達(dá)出△OMP的面積即可,利用二次函數(shù)的性質(zhì)求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點(diǎn)B,設(shè)直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點(diǎn)的坐標(biāo)為,∴當(dāng)時(shí),有最大值1.【點(diǎn)睛】本題考查了二次函數(shù)與幾何動(dòng)態(tài)問題,解題的關(guān)鍵是根據(jù)題意表達(dá)出點(diǎn)的坐標(biāo),利用幾何知識(shí)列出函數(shù)關(guān)系式.21、(1)見解析;(2).【解析】
(1)直接利用直角三角形的性質(zhì)得出,再利用DE∥BC,得出∠2=∠3,進(jìn)而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的長(zhǎng),進(jìn)而得出EC的長(zhǎng).【詳解】(1)證明:∵AD⊥DB,點(diǎn)E為AB的中點(diǎn),∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【點(diǎn)睛】此題主要考查了直角三角形斜邊上的中線與斜邊的關(guān)系,正確得出DB,DE的長(zhǎng)是解題關(guān)鍵.22、(1)(2)【解析】
(1)將A坐標(biāo)代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長(zhǎng),根據(jù)對(duì)稱軸求出CD的長(zhǎng),令y=0求出x的值,確定出OB的長(zhǎng),根據(jù)梯形面積公式即可求出梯形COBD的面積.【詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對(duì)于拋物線解析式,令x=0,得到y(tǒng)=2,即OC=2,∵拋物線的對(duì)稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.23、(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)或;(3).【解析】
(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),由此畫出圖形即可判斷;(2)因?yàn)镋是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),因?yàn)镋在直線上,推出點(diǎn)E在線段FG上,求出點(diǎn)F、G的橫坐標(biāo),再根據(jù)對(duì)稱性即可解決問題;(3)因?yàn)榫€段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,分兩種情形:①如圖3中,MN與小⊙Q相切于點(diǎn)F,求出此時(shí)點(diǎn)Q的橫坐標(biāo);②M如圖4中,落在大⊙Q上,求出點(diǎn)Q的橫坐標(biāo)即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),∵點(diǎn)E在直線上,∴點(diǎn)E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對(duì)稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,①M(fèi)N與小⊙Q相切于點(diǎn)F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點(diǎn)睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)尋找特殊位置解決數(shù)學(xué)問題,屬于中考?jí)狠S題.24、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點(diǎn)睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.25、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】
試題分析:(1)根據(jù)等腰直角三角形的性質(zhì),求得∠DAC=∠ACD=45°,進(jìn)而根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似,可得△CEF∽△CAE,然后根據(jù)相似三角形的性質(zhì)和勾股定理可求解;(2)根據(jù)相似三角形的判定與性質(zhì),由三角形的周長(zhǎng)比可求解;(3)由(2)中的相似三角形的對(duì)應(yīng)邊成比例,可求出AB的關(guān)系,然后可由∠ABE的正切值求解.試題解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根據(jù)勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.26、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題中“完美矩形”的定義設(shè)出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)P′,連接DP′交BC于點(diǎn)E,此時(shí)△PDE的周長(zhǎng)最小,設(shè)AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對(duì)稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對(duì)應(yīng)邊相等得到FH=DH,再由G為CF中點(diǎn),得到HG為中位線,利用中位線性質(zhì)求出GH的長(zhǎng)即可.【詳解】(1)在圖1中,設(shè)AD=BC=a,則有AB=CD=a,∵四邊形ABCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年秋蘇少版(2024)初中美術(shù)七年級(jí)上冊(cè)期末知識(shí)點(diǎn)復(fù)習(xí)卷及答案(三套)
- 氣道護(hù)理中的風(fēng)險(xiǎn)評(píng)估
- 產(chǎn)后傷口護(hù)理與注意事項(xiàng)
- 埃博拉出血熱患者的家庭護(hù)理和家庭照顧
- 大豐市小海中學(xué)高二生物三同步課程講義第講激素的調(diào)節(jié)(三)
- 2025年辦公區(qū)域網(wǎng)絡(luò)布線協(xié)議
- 瓷磚鋪貼施工技術(shù)規(guī)程
- 城市更新項(xiàng)目評(píng)價(jià)
- 2025年共同富裕背景下農(nóng)村基礎(chǔ)設(shè)施管護(hù)
- 2025年中國運(yùn)動(dòng)康復(fù)行業(yè)市場(chǎng)研究報(bào)告 碩遠(yuǎn)咨詢
- 旋挖鉆機(jī)地基承載力驗(yàn)算2017.7
- 機(jī)械加工檢驗(yàn)標(biāo)準(zhǔn)及方法
- 數(shù)學(xué)家祖沖之課件
- 充電樁采購安裝投標(biāo)方案1
- 24春國家開放大學(xué)《知識(shí)產(chǎn)權(quán)法》形考任務(wù)1-4參考答案
- 小米員工管理手冊(cè)
- 自身免疫性肝病的診斷和治療
- 國家開放大學(xué)化工節(jié)能課程-復(fù)習(xí)資料期末復(fù)習(xí)題
- xx鄉(xiāng)鎮(zhèn)衛(wèi)生院重癥精神病管理流程圖
- 2023年印江縣人民醫(yī)院緊缺醫(yī)學(xué)專業(yè)人才招聘考試歷年高頻考點(diǎn)試題含答案解析
- 安徽綠沃循環(huán)能源科技有限公司12000t-a鋰離子電池高值資源化回收利用項(xiàng)目(重新報(bào)批)環(huán)境影響報(bào)告書
評(píng)論
0/150
提交評(píng)論