付費(fèi)下載
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
二、函數(shù)極自變量趨于有限值時(shí)函數(shù)的極x2 f(x)x limlimf(x)=x?問(wèn)題:問(wèn)題:yfx)xx0的過(guò)程中,對(duì)應(yīng)函數(shù)值fx)無(wú)限趨近于確定值A(chǔ).f(x)表示f(x)任意小;0x 表示xx0的過(guò)程x0
x0 點(diǎn)x0的去心鄰域 體現(xiàn)x接近x0程度(1)定義1如果對(duì)于任意給定的正數(shù)(不論它多么小),總存在正數(shù),使得對(duì)于適合不等式0xx0的一切xfx)都fxA,那末常數(shù)A就叫函數(shù)fx)當(dāng)xx0時(shí)的極限,記作limfx) 或fx)A(當(dāng)xx0x"""00,使當(dāng)0x時(shí)恒f(x)注意1.函數(shù)極限與f(x)在點(diǎn)x0是否有定義無(wú)關(guān)與任意給定的正數(shù) yyfyyf(x)AAAoxx0x000域時(shí),函數(shù)yf(x)線(xiàn)y為中心線(xiàn),寬為2的帶形區(qū)域內(nèi)顯然,找到一個(gè)后,越小越好例 證明limCC,(C為常數(shù) 任取
x
時(shí)f(x)
C
0成立,limC例 證明limx f(x)A
x
取
x
時(shí)f(x)A
x
成立
limx例
x2
x證函數(shù)在點(diǎn)x=1處沒(méi)有定義x2f(x)A
x1
x
要使f(x
只要取當(dāng)0x1時(shí)
x2 x
x2 x例 x x0 f(x)A
x
xx
xx0
要使f(x
取 x0只要xx0 x0且不取負(fù)值
x
時(shí)
x
lim
x x0單側(cè)極限例如1 x
yy1f(x)
x2
x
yx2 limf(x) 分x0和x0x從左側(cè)無(wú)限趨近x0 記作xx0x從右側(cè)無(wú)限趨近x0 記作xx0注意:{x0
x
}
0xx0}
xx0{x左極0,0,使當(dāng)x0{x左極f(xA記作 f(x) xx00(xx0
f(x00)右極0,0,使當(dāng)x0xx0時(shí)右極f(xA記作 f(x) 或f(x00)xx00(xx0定理1:limf(x)Af(x0
0)f(x00)y1o 1xxy1o 1xx x證 limx
lim(1)xlimxlim1x x00 左右極限存在但不相等
limf(x不存在2、自變量趨向無(wú)窮大時(shí)函數(shù)的sinxx時(shí)的變化趨勢(shì)x問(wèn)題:問(wèn)題:yfx)在x的過(guò)程中,對(duì)應(yīng)函數(shù)值fx)無(wú)限趨近于確定值A(chǔ).問(wèn)題:如何用數(shù)學(xué)語(yǔ)言刻劃函數(shù)“無(wú)限接近f(xAf(xA任意小xX表示x的過(guò)程(1)定義1如果對(duì)于任意給定的正數(shù)(不論它多么小),總存在著正數(shù)X,使得對(duì)于適合不等xX的一切x,所對(duì)應(yīng)的函數(shù)fx)都滿(mǎn)足不等式fx)A,那末常數(shù)A就叫函fx)當(dāng)x時(shí)的極限limfx) 或fxA(當(dāng)xx"X"limf("X"0,X0,xX時(shí)f(xA另兩種情形10x情形
limf(x)0X0使當(dāng)xX時(shí)
f(x)
20x情形
limf(x)0,X0,使當(dāng)xX時(shí)
f(x)
定理2:limf(x)A limf(x)A且limf(x)
幾何解釋AysinxX當(dāng)xX或xX時(shí),yfysinxXysinx例 證明limsinysinx sinx sinx0sinxx
0,取X1
Xsinx
limsinx 定義:如果limf(x)c,則直線(xiàn)yc是函數(shù)y f(x)的圖形的水平漸近線(xiàn)三、函數(shù)極限如果極限lim定理4(局部有界性定理那定理4(局部有界性定理若limfxA,則fx在x0的某去心鄰域內(nèi)xx0有界,即存在常數(shù)M0及0,使當(dāng)0xx0時(shí)有f(x)M在某點(diǎn)的去心鄰域內(nèi),則在這點(diǎn)的極限定理定理5(局部保序性定理如果limf(x)Alimg(x)B,且A 則0,使當(dāng)0xx0時(shí),有f(x)g(x).推推論1(局部保號(hào)性定理如果limf(x)A,且A0或A0,則xx0使當(dāng)0xx0時(shí)有f(x)0或f(x)f(x)
若limf(xA,且0,當(dāng)x?(x0,)時(shí)推論推論0(或f(x
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息通信信息化系統(tǒng)管理員安全教育水平考核試卷含答案
- 鋼水罐準(zhǔn)備工班組考核強(qiáng)化考核試卷含答案
- 數(shù)碼沖印師安全操作能力考核試卷含答案
- 氣體分離工操作管理考核試卷含答案
- 海上平臺(tái)電氣培訓(xùn)
- 酒店客房預(yù)訂操作規(guī)范及風(fēng)險(xiǎn)控制制度
- 酒店餐飲服務(wù)規(guī)范制度
- 車(chē)站客運(yùn)服務(wù)安全操作規(guī)程制度
- 綠色建筑構(gòu)件裝備制造項(xiàng)目可行性研究報(bào)告模板-備案審批
- 水基型滅火器生產(chǎn)線(xiàn)項(xiàng)目環(huán)境影響報(bào)告表
- 2026年標(biāo)準(zhǔn)版離婚協(xié)議書(shū)(有財(cái)產(chǎn))
- 養(yǎng)老院電氣火災(zāi)培訓(xùn)課件
- 中國(guó)工商銀行2025年度春季校園招聘筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 對(duì)外話(huà)語(yǔ)體系構(gòu)建的敘事話(huà)語(yǔ)建構(gòu)課題申報(bào)書(shū)
- 中國(guó)家庭財(cái)富與消費(fèi)報(bào)告2025年第三季度
- 馬年猜猜樂(lè)(馬的成語(yǔ))打印版
- 精神障礙防治責(zé)任承諾書(shū)(3篇)
- 2025年擔(dān)保公司考試題庫(kù)(含答案)
- 合肥新鑫人力資源服務(wù)有限公司介紹企業(yè)發(fā)展分析報(bào)告
- 2025年金融控股公司行業(yè)分析報(bào)告及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)
- 質(zhì)量控制計(jì)劃模板全行業(yè)適用
評(píng)論
0/150
提交評(píng)論