版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列各數(shù):1.414,,﹣,0,其中是無(wú)理數(shù)的為()A.1.414 B. C.﹣ D.02.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點(diǎn)在AD上,CD與QR相交于S點(diǎn),則四邊形RBCS的面積為()A.8 B. C. D.3.在0,-2,5,,-0.3中,負(fù)數(shù)的個(gè)數(shù)是().A.1 B.2 C.3 D.44.已知在一個(gè)不透明的口袋中有4個(gè)形狀、大小、材質(zhì)完全相同的球,其中1個(gè)紅色球,3個(gè)黃色球.從口袋中隨機(jī)取出一個(gè)球(不放回),接著再取出一個(gè)球,則取出的兩個(gè)都是黃色球的概率為()A.34 B.23 C.95.為了紀(jì)念物理學(xué)家費(fèi)米,物理學(xué)界以費(fèi)米(飛米)作為長(zhǎng)度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣126.如圖,在⊙O中,弦BC=1,點(diǎn)A是圓上一點(diǎn),且∠BAC=30°,則的長(zhǎng)是()A.π B. C. D.7.通過(guò)觀察下面每個(gè)圖形中5個(gè)實(shí)數(shù)的關(guān)系,得出第四個(gè)圖形中y的值是()A.8 B.﹣8 C.﹣12 D.128.港珠澳大橋目前是全世界最長(zhǎng)的跨海大橋,其主體工程“海中橋隧”全長(zhǎng)35578米,數(shù)據(jù)35578用科學(xué)記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1059.如果解關(guān)于x的分式方程時(shí)出現(xiàn)增根,那么m的值為A.-2 B.2 C.4 D.-410.已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是()個(gè).A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)二、填空題(共7小題,每小題3分,滿分21分)11.若點(diǎn)A(1,m)在反比例函數(shù)y=的圖象上,則m的值為_(kāi)_______.12.對(duì)于實(shí)數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.13.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個(gè)圓錐形無(wú)底紙帽,則這個(gè)紙帽的高是_____cm.14.如圖,四邊形ABCD是菱形,☉O經(jīng)過(guò)點(diǎn)A,C,D,與BC相交于點(diǎn)E,連接AC,AE,若∠D=78°,則∠EAC=________°.15.一個(gè)不透明的盒子里有n個(gè)除顏色外其他完全相同的小球,其中有9個(gè)黃球每次摸球前先將盒子里的球搖勻,任意摸出一個(gè)球記下顏色后放回盒子,通過(guò)大量重復(fù)摸球試驗(yàn)后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計(jì)盒子中小球的個(gè)數(shù)是_______.16.如圖,圓柱形容器高為18cm,底面周長(zhǎng)為24cm,在杯內(nèi)壁離杯底4cm的點(diǎn)B處有乙滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻從外幣A處到達(dá)內(nèi)壁B處的最短距離為_(kāi)______.17.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)M是第二象限內(nèi)拋物線上一點(diǎn),BM交y軸于N.(1)求點(diǎn)A、B的坐標(biāo);(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.19.(5分)如圖,在△ABC中,AB=AC=4,∠A=36°.在AC邊上確定點(diǎn)D,使得△ABD與△BCD都是等腰三角形,并求BC的長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)20.(8分)某中學(xué)為了了解在校學(xué)生對(duì)校本課程的喜愛(ài)情況,隨機(jī)調(diào)查了部分學(xué)生對(duì)五類(lèi)校本課程的喜愛(ài)情況,要求每位學(xué)生只能選擇一類(lèi)最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個(gè)不完整統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中所提供的信息,完成下列問(wèn)題:(1)本次被調(diào)查的學(xué)生的人數(shù)為;(2)補(bǔ)全條形統(tǒng)計(jì)圖(3)扇形統(tǒng)計(jì)圖中,類(lèi)所在扇形的圓心角的度數(shù)為;(4)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校最喜愛(ài)兩類(lèi)校本課程的學(xué)生約共有多少名.21.(10分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時(shí),求AP的長(zhǎng);設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫(xiě)出旋轉(zhuǎn)過(guò)程中EP、EQ、EC之間的數(shù)量關(guān)系.22.(10分)如圖,的直角頂點(diǎn)P在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點(diǎn)C,軸于點(diǎn)D,AB分別與x軸,y軸相交于點(diǎn)F和已知點(diǎn)B的坐標(biāo)為.填空:______;證明:;當(dāng)四邊形ABCD的面積和的面積相等時(shí),求點(diǎn)P的坐標(biāo).23.(12分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.24.(14分)根據(jù)函數(shù)學(xué)習(xí)中積累的知識(shí)與經(jīng)驗(yàn),李老師要求學(xué)生探究函數(shù)y=+1的圖象.同學(xué)們通過(guò)列表、描點(diǎn)、畫(huà)圖象,發(fā)現(xiàn)它的圖象特征,請(qǐng)你補(bǔ)充完整.(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)的圖象向上平移個(gè)單位得到;(2)函數(shù)y=+1的圖象與x軸、y軸交點(diǎn)的情況是:;(3)請(qǐng)你構(gòu)造一個(gè)函數(shù),使其圖象與x軸的交點(diǎn)為(2,0),且與y軸無(wú)交點(diǎn),這個(gè)函數(shù)表達(dá)式可以是.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】試題分析:根據(jù)無(wú)理數(shù)的定義可得是無(wú)理數(shù).故答案選B.考點(diǎn):無(wú)理數(shù)的定義.2、D【解析】
根據(jù)正方形的邊長(zhǎng),根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長(zhǎng)為4,正方形BPQR的邊長(zhǎng)為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關(guān)鍵.3、B【解析】
根據(jù)負(fù)數(shù)的定義判斷即可【詳解】解:根據(jù)負(fù)數(shù)的定義可知,這一組數(shù)中,負(fù)數(shù)有兩個(gè),即-2和-0.1.故選B.4、D【解析】試題分析:列舉出所有情況,看取出的兩個(gè)都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫(huà)樹(shù)狀圖如下:共有12種情況,取出2個(gè)都是黃色的情況數(shù)有6種,所以概率為12故選D.考點(diǎn):列表法與樹(shù)狀法.5、A【解析】
根據(jù)科學(xué)記數(shù)法的表示方法解答.【詳解】解:把這個(gè)數(shù)用科學(xué)記數(shù)法表示為.故選:.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)科學(xué)記數(shù)法的應(yīng)用,熟練掌握小于0的數(shù)用科學(xué)記數(shù)法表示法是解題的關(guān)鍵.6、B【解析】
連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長(zhǎng)公式計(jì)算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長(zhǎng)=,故選B.【點(diǎn)睛】考查弧長(zhǎng)公式,等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,屬于中考??碱}型.7、D【解析】
根據(jù)前三個(gè)圖形中數(shù)字之間的關(guān)系找出運(yùn)算規(guī)律,再代入數(shù)據(jù)即可求出第四個(gè)圖形中的y值.【詳解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故選D.【點(diǎn)睛】本題考查了規(guī)律型中數(shù)字的變化類(lèi),根據(jù)圖形中數(shù)與數(shù)之間的關(guān)系找出運(yùn)算規(guī)律是解題的關(guān)鍵.8、B【解析】
科學(xué)計(jì)數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點(diǎn)睛】本題主要考查的是利用科學(xué)計(jì)數(shù)法表示較大的數(shù),屬于基礎(chǔ)題型.理解科學(xué)計(jì)數(shù)法的表示方法是解題的關(guān)鍵.9、D【解析】
,去分母,方程兩邊同時(shí)乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.當(dāng)x=1時(shí),m+4=1﹣1,m=﹣4,故選D.10、B【解析】分析:根據(jù)已知畫(huà)出圖象,把x=?2代入得:4a?2b+c=0,把x=?1代入得:y=a?b+c>0,根據(jù)不等式的兩邊都乘以a(a<0)得:c>?2a,由4a?2b+c=0得而0<c<2,得到即可求出2a?b+1>0.詳解:根據(jù)二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(?2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方,畫(huà)出圖象為:如圖把x=?2代入得:4a?2b+c=0,∴①正確;把x=?1代入得:y=a?b+c>0,如圖A點(diǎn),∴②錯(cuò)誤;∵(?2,0)、(x1,0),且1<x1,∴取符合條件1<x1<2的任何一個(gè)x1,?2?x1<?2,∴由一元二次方程根與系數(shù)的關(guān)系知∴不等式的兩邊都乘以a(a<0)得:c>?2a,∴2a+c>0,∴③正確;④由4a?2b+c=0得而0<c<2,∴∴?1<2a?b<0∴2a?b+1>0,∴④正確.所以①③④三項(xiàng)正確.故選B.點(diǎn)睛:屬于二次函數(shù)綜合題,考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,拋物線與軸的交點(diǎn),屬于常考題型.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.12、11≤x<1【解析】
根據(jù)對(duì)于實(shí)數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點(diǎn)睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關(guān)鍵.13、【解析】
先求出扇形弧長(zhǎng),再求出圓錐的底面半徑,再根據(jù)勾股定理即可出圓錐的高.【詳解】圓心角為120°,半徑為6cm的扇形的弧長(zhǎng)為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【點(diǎn)睛】此題主要考查圓的弧長(zhǎng)及圓錐的底面半徑,解題的關(guān)鍵是熟知圓的相關(guān)公式.14、1.【解析】
解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內(nèi)接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°15、1【解析】
根據(jù)利用頻率估計(jì)概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計(jì)算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個(gè)不透明的盒子里大約有1個(gè)除顏色外其他完全相同的小球.故答案為1.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來(lái)越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.當(dāng)實(shí)驗(yàn)的所有可能結(jié)果不是有限個(gè)或結(jié)果個(gè)數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時(shí),一般通過(guò)統(tǒng)計(jì)頻率來(lái)估計(jì)概率.16、20cm.【解析】
將杯子側(cè)面展開(kāi),建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求.【詳解】解:如答圖,將杯子側(cè)面展開(kāi),作A關(guān)于EF的對(duì)稱點(diǎn)A′,連接A′B,則A′B即為最短距離.根據(jù)勾股定理,得(cm).故答案為:20cm.【點(diǎn)睛】本題考查了平面展開(kāi)---最短路徑問(wèn)題,將圖形展開(kāi),利用軸對(duì)稱的性質(zhì)和勾股定理進(jìn)行計(jì)算是解題的關(guān)鍵.同時(shí)也考查了同學(xué)們的創(chuàng)造性思維能力.17、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因?yàn)椤螧CD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.三、解答題(共7小題,滿分69分)18、(1)A(﹣4,0),B(3,0);(2);(3).【解析】
(1)設(shè)y=0,可求x的值,即求A,B的坐標(biāo);(2)作MD⊥x軸,由CO∥MD可得OD=3,把x=-3代入解析式可得M點(diǎn)坐標(biāo),可得ON的長(zhǎng)度,根據(jù)S△BMC=,可求a的值;(3)過(guò)M點(diǎn)作ME∥AB,設(shè)NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M點(diǎn)坐標(biāo),代入可得k,m,a的關(guān)系式,由CO=2km+m=-12a,可得方程組,解得k,即可求結(jié)果.【詳解】(1)設(shè)y=0,則0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如圖1,作MD⊥x軸,∵M(jìn)D⊥x軸,OC⊥x軸,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴當(dāng)x=﹣3時(shí),y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴,∴ON=﹣3a,根據(jù)題意得:C(0,﹣12a),∵S△MBC=,∴(﹣12a+3a)×6=,a=﹣,(3)如圖2:過(guò)M點(diǎn)作ME∥AB,∵M(jìn)E∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,設(shè)NO=m,=k(k>0),∵M(jìn)E∥AB,∴==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×=(k+1)(9k﹣12),∴=9k-12,∴k=,∴.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是函數(shù)解析式的求法,二次函數(shù)的圖象和性質(zhì),是二次函數(shù)與解析幾何知識(shí)的綜合應(yīng)用,難度較大.19、【解析】
作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,依據(jù)相似三角形的性質(zhì)即可得出BC的長(zhǎng).【詳解】如圖所示,作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC,∴,設(shè)BC=BD=AD=x,則CD=4﹣x,∵BC2=AC×CD,∴x2=4×(4﹣x),解得x1=,x2=(舍去),∴BC的長(zhǎng).【點(diǎn)睛】本題主要考查了復(fù)雜作圖以及相似三角形的判定與性質(zhì),解決此類(lèi)題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.20、(1)300;(2)見(jiàn)解析;(3)108°;(4)約有840名.【解析】
(1)根據(jù)A種類(lèi)人數(shù)及其占總?cè)藬?shù)百分比可得答案;
(2)用總?cè)藬?shù)乘以B的百分比得出其人數(shù),即可補(bǔ)全條形圖;
(3)用360°乘以C類(lèi)人數(shù)占總?cè)藬?shù)的比例可得;
(4)總?cè)藬?shù)乘以C、D兩類(lèi)人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調(diào)查的學(xué)生的人數(shù)為69÷23%=300(人),
故答案為:300;
(2)喜歡B類(lèi)校本課程的人數(shù)為300×20%=60(人),
補(bǔ)全條形圖如下:
(3)扇形統(tǒng)計(jì)圖中,C類(lèi)所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計(jì)該校喜愛(ài)C,D兩類(lèi)校本課程的學(xué)生共有840名.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解題關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).21、(1)證明見(jiàn)解析(2)(3)EP+EQ=EC【解析】
(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長(zhǎng);作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點(diǎn)睛】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形.22、(1)1;(2)證明見(jiàn)解析;(1)點(diǎn)坐標(biāo)為.【解析】
由點(diǎn)B的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出k值;設(shè)A點(diǎn)坐標(biāo)為,則D點(diǎn)坐標(biāo)為,P點(diǎn)坐標(biāo)為,C點(diǎn)坐標(biāo)為,進(jìn)而可得出PB,PC,PA,PD的長(zhǎng)度,由四條線段的長(zhǎng)度可得出,結(jié)合可得出∽,由相似三角形的性質(zhì)可得出,再利用“同位角相等,兩直線平行”可證出;由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關(guān)于a的方程,解之取其負(fù)值,再將其代入P點(diǎn)的坐標(biāo)中即可求出結(jié)論.【詳解】解:點(diǎn)在反比例函數(shù)的圖象,.故答案為:1.證明:反比例函數(shù)解析式為,設(shè)A點(diǎn)坐標(biāo)為軸于點(diǎn)C,軸于點(diǎn)D,點(diǎn)坐標(biāo)為,P點(diǎn)坐標(biāo)為,C點(diǎn)坐標(biāo)為,,,,,,,.又,∽,,.解:四邊形ABCD的面積和的面積相等,,,整理得:,解得:,舍去,點(diǎn)坐標(biāo)為.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、相似三角形的判定與性質(zhì)、平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 比喻句教學(xué)活動(dòng)設(shè)計(jì)指導(dǎo)手冊(cè)
- 一年級(jí)趣味大個(gè)子與小個(gè)子教學(xué)設(shè)計(jì)
- 互聯(lián)網(wǎng)營(yíng)銷(xiāo)數(shù)據(jù)分析工具使用教程
- 教育行業(yè)在線教學(xué)平臺(tái)開(kāi)發(fā)方案
- 制造業(yè)質(zhì)量管理體系建設(shè)經(jīng)驗(yàn)
- 企業(yè)客戶數(shù)據(jù)管理流程規(guī)范
- 基于BIM的工程項(xiàng)目進(jìn)度數(shù)據(jù)可視化方法
- 二手房交易流程及法律風(fēng)險(xiǎn)防范
- 農(nóng)業(yè)物資采購(gòu)合同范本大全
- 泵站施工方案資料(3篇)
- 萬(wàn)物皆模型:100個(gè)思維模型
- 培訓(xùn)學(xué)校工資結(jié)構(gòu)
- 福建省泉州實(shí)驗(yàn)中學(xué)2026屆九上物理期中學(xué)業(yè)水平測(cè)試試題含解析
- 2025貴州遵義市大數(shù)據(jù)集團(tuán)有限公司招聘工作人員筆試及人員筆試歷年參考題庫(kù)附帶答案詳解
- 2026山東省考申論試題及答案
- 新三體系培訓(xùn)教材
- 現(xiàn)代無(wú)人機(jī)航拍技術(shù)應(yīng)用講義
- 北師大簡(jiǎn)介課件
- 針刺傷預(yù)防處理標(biāo)準(zhǔn)解讀
- 機(jī)器人工程技術(shù)人員筆試試題及答案
- crm系統(tǒng)使用管理辦法
評(píng)論
0/150
提交評(píng)論