版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當(dāng)輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.2.設(shè)F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.3.已知,,,則,,的大小關(guān)系為()A. B. C. D.4.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.5.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關(guān)于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④6.若均為任意實數(shù),且,則的最小值為()A. B. C. D.7.公元前世紀,古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個米時,烏龜先他米,當(dāng)阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米8.若復(fù)數(shù)滿足,則()A. B. C. D.9.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.410.設(shè),隨機變量的分布列是01則當(dāng)在內(nèi)增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大11.已知為正項等比數(shù)列,是它的前項和,若,且與的等差中項為,則的值是()A.29 B.30 C.31 D.3212.設(shè),是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點處的切線方程是_______.14.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.15.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)16.已知函數(shù)的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.18.(12分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.19.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.20.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.21.(12分)已知數(shù)列的各項均為正數(shù),為其前n項和,對于任意的滿足關(guān)系式.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的通項公式是,前n項和為,求證:對于任意的正數(shù)n,總有.22.(10分)已知集合,.(1)若,則;(2)若,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.2、A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習(xí),才能在解決此類問題時事半功倍,信手拈來.3、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對數(shù)式比較大小,屬于中檔題.4、A【解析】
計算的中點坐標為,圓半徑為,得到圓方程.【詳解】的中點坐標為:,圓半徑為,圓方程為.故選:.【點睛】本題考查了圓的標準方程,意在考查學(xué)生的計算能力.5、C【解析】
分四類情況進行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.6、D【解析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉(zhuǎn)化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結(jié)合圖形,可以斷定那個點應(yīng)該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應(yīng)為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點睛】本題考查函數(shù)在一點處切線斜率的應(yīng)用,考查圓的程,兩條直線垂直的斜率關(guān)系,屬中檔題.7、D【解析】
根據(jù)題意,是一個等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應(yīng)用,還考查了建模解模的能力,屬于中檔題.8、C【解析】
化簡得到,,再計算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復(fù)數(shù)的化簡,共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計算能力.9、D【解析】
根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.10、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.11、B【解析】
設(shè)正項等比數(shù)列的公比為q,運用等比數(shù)列的通項公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計算即可得到所求.【詳解】設(shè)正項等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項為,即有a4+a7=,即16q3+16q6,=,解得q=(負值舍去),則有S5===1.故選C.【點睛】本題考查等比數(shù)列的通項和求和公式的運用,同時考查等差數(shù)列的性質(zhì),考查運算能力,屬于中檔題.12、A【解析】
利用韋達定理可得,,結(jié)合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當(dāng)時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導(dǎo),x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導(dǎo)法則及運算,考查直線方程,考查計算能力,是基礎(chǔ)題14、3【解析】
在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.15、【解析】
根據(jù)題意,設(shè),則,所以,解得,所以,從而有.16、【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數(shù)的圖像與性質(zhì).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設(shè)O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對邊平行,或是構(gòu)造三角形中位線.18、【解析】試題分析:先將問題“存在實數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當(dāng)且僅當(dāng)時取“”,故常數(shù)的取值范圍是.考點:柯西不等式即運用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的運用.19、(1);(2)見解析.【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),,,當(dāng)時,,,,則函數(shù)在上單調(diào)遞增;當(dāng)時,,,,則函數(shù)在上單調(diào)遞減;當(dāng)時,,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點個數(shù)問題,同時也考查了利用導(dǎo)數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.20、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標系,由已知求出線段長,得出各點坐標,用平面的法向量計算二面角的余弦.【詳解】(1)易
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安康鎮(zhèn)坪縣社區(qū)工作者招聘備考題庫(6人)及一套完整答案詳解
- 2026內(nèi)蒙古鄂爾多斯市東勝區(qū)第八小學(xué)語文教師招聘備考題庫及答案詳解參考
- 2025年中學(xué)教師資格《綜合素質(zhì)》學(xué)生心理輔導(dǎo)案例題庫試題及答案集
- 未來五年皮棉加工服務(wù)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 未來五年黃連木果初榨油企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 國際貿(mào)易業(yè)務(wù)操作流程手冊(標準版)
- 2025-2030木質(zhì)顆粒燃料行業(yè)市場發(fā)展分析及發(fā)展前景與投資機會研究報告
- 圖書館信息化建設(shè)與運維手冊(標準版)
- 2025-2030中國紫癜病患者護理服務(wù)行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2025至2030中國汽車金融行業(yè)發(fā)展模式及風(fēng)險控制策略研究報告
- 宅基地兄弟贈與協(xié)議書
- 影視文學(xué)劇本分析其文體特征
- (正式版)JTT 1218.6-2024 城市軌道交通運營設(shè)備維修與更新技術(shù)規(guī)范 第6部分:站臺門
- 2023年美國專利法中文
- 內(nèi)科質(zhì)控會議管理制度
- 電氣防火防爆培訓(xùn)課件
- 彝族文化和幼兒園課程結(jié)合的研究獲獎科研報告
- 空調(diào)安裝免責(zé)協(xié)議
- 湖北省襄樊市樊城區(qū)2023-2024學(xué)年數(shù)學(xué)四年級第一學(xué)期期末質(zhì)量檢測試題含答案
- 新北師大版八年級數(shù)學(xué)下冊導(dǎo)學(xué)案(全冊)
- cimatron紫藤教程系列g(shù)pp2運行邏輯及block說明
評論
0/150
提交評論