2023年湖南省常德市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2023年湖南省常德市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2023年湖南省常德市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2023年湖南省常德市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2023年湖南省常德市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年湖南省常德市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.

2.

3.下列關(guān)于構(gòu)建的幾何形狀說法不正確的是()。

A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿

4.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

5.下列命題正確的是().A.A.

B.

C.

D.

6.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.

B.

C.

D.

7.

8.過點(diǎn)(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為

A.

B.

C.

D.-2x+3(y-2)+z-4=0

9.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少

10.

11.

12.

13.

14.

15.

16.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)

B.

C.0

D.f(a)-f(-a)

17.下列說法中不能提高梁的抗彎剛度的是()。

A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)

18.

19.()A.A.2xy+y2

B.x2+2xy

C.4xy

D.x2+y2

20.

二、填空題(20題)21.

22.23.24.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.25.26.過點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.27.28.

29.

30.

31.

32.

33.

34.35.級數(shù)的收斂區(qū)間為______.36.

37.

38.

39.

40.過點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為__________。

三、計(jì)算題(20題)41.證明:42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.45.46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.47.求微分方程的通解.48.

49.

50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

51.52.將f(x)=e-2X展開為x的冪級數(shù).

53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

54.

55.

56.求微分方程y"-4y'+4y=e-2x的通解.

57.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

59.

60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.設(shè)y=x2+sinx,求y'.

62.

63.64.

65.

66.求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.

67.

68.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.69.求曲線y=在點(diǎn)(1,1)處的切線方程.70.五、高等數(shù)學(xué)(0題)71.

,則

=__________。

六、解答題(0題)72.

參考答案

1.D解析:

2.D

3.D

4.C

5.D本題考查的知識點(diǎn)為收斂級數(shù)的性質(zhì)和絕對收斂的概念.

由絕對收斂級數(shù)的性質(zhì)“絕對收斂的級數(shù)必定收斂”可知應(yīng)選D.

6.D

7.C

8.C

9.A本題考查的知識點(diǎn)為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.

10.C

11.A

12.B解析:

13.C解析:

14.C解析:

15.B

16.C本題考查的知識點(diǎn)為定積分的對稱性.

由定積分的對稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則

可知應(yīng)選C.

17.A

18.A

19.A

20.D

21.x=2x=2解析:22.-24.

本題考查的知識點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

23.本題考查的知識點(diǎn)為不定積分的換元積分法。

24.

;本題考查的知識點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.

由于x2+y2≤a2,y>0可以表示為

0≤θ≤π,0≤r≤a,

因此

25.1.

本題考查的知識點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f(1)=2,可知

26.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為

27.

28.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點(diǎn)。

29.ln|x-1|+c

30.x(asinx+bcosx)

31.

32.

33.

解析:

34.1/2本題考查了對∞-∞型未定式極限的知識點(diǎn),35.(-1,1)本題考查的知識點(diǎn)為求冪級數(shù)的收斂區(qū)間.

所給級數(shù)為不缺項(xiàng)情形.

可知收斂半徑,因此收斂區(qū)間為

(-1,1).

注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).

本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時過于緊張而導(dǎo)致的錯誤.

36.x2x+3x+C本題考查了不定積分的知識點(diǎn)。

37.1/x

38.

39.1/(1-x)2

40.

41.

42.

43.

列表:

說明

44.由二重積分物理意義知

45.

46.

47.

48.

49.由一階線性微分方程通解公式有

50.

51.

52.

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

54.

55.

56.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

57.由等價無窮小量的定義可知58.函數(shù)的定義域?yàn)?/p>

注意

59.

60.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

61.由導(dǎo)數(shù)的四則運(yùn)算法則可知y'=(x+sinx)'=x'+(sinx)'=1+cosx.

62.

63.

64.

65.66.所給曲線圍成的平面圖形如圖1-3所示.

解法1利用定積分求平面圖形的面積.由于的解為x=1,y=2,可得

解法2利用二重積分求平面圖形面積.由于

的解為x=1,y=2,

求旋轉(zhuǎn)體體積與解法1同.本題考查的知識點(diǎn)有兩個:利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.

本題也可以利用二重積分求平面圖形的面積.

67.68.由于y=x2,則y'=2x,曲線y=x2上過點(diǎn)A(a,a2)的切線方程為y-a2=2a(x-a),即y=2ax-a2,曲線y=x2,其過點(diǎn)A(a,a2)的切線及x軸圍成的平面圖形的面積

由題設(shè)S=1/12,可得a=1,因此A點(diǎn)的坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論