李慶揚數(shù)值分析第五版習題答案清華大學出版社_第1頁
李慶揚數(shù)值分析第五版習題答案清華大學出版社_第2頁
李慶揚數(shù)值分析第五版習題答案清華大學出版社_第3頁
李慶揚數(shù)值分析第五版習題答案清華大學出版社_第4頁
李慶揚數(shù)值分析第五版習題答案清華大學出版社_第5頁
已閱讀5頁,還剩64頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

第一章緒論1.設x0,x的相對誤差為,求lnx的誤差。e*x*x解:近似值x=的相對誤差為e**x*elnx*lnx*lnx1e*x*r而lnx的誤差為x*進而有(lnx*)2.設x的相對誤差為2%,求。x的相對誤差n解:設f(x)xn,則函數(shù)的xf'(x)|C|p條件數(shù)為f(x),C|xnxn1|nf'(x)nxn1又又np((x*)n)C(x*)rpr且e(x*)為2r((x*)n)0.02nr3.下列各數(shù)都是經(jīng)過四舍五入得到的近似數(shù),即誤差限不超過最后一位的半個單位,試指x*1.1021,x0.031,x385.6,**23出它們是幾位有效數(shù)字:1x*56.430,x71.0.*54解:x*1.1021是五位有效數(shù)字;1x*0.031是二位有效數(shù)字;2x*385.6是四位有效數(shù)字;3x*56.430是五位有效數(shù)字;4x*71.0.是二位有效數(shù)字。54.利用公式求下列各近似值的誤差限:(1)x*x*x*4,(2)x*x*x,(3)x*/x*23*4.1212其中x*,x*,x*,x均為*4第3題所給的數(shù)。123解:(x*)110421(x*)110322(x*)110123(x*)110324(x*)110125(1)(x*x*x*)124(x*)(x*)(x*)1241110411031032221.05103(2)(x*x*x*)123**13xx(x*)xx(x*)xx(x*)****23123121.10210.03111010.031385.611041.1021385.611032220.215(3)(x*/x*)24x(x*)x(x*)*2*4422x*40.031110356.43011032256.43056.4301055計算球體積要使相對誤差限為1,問度量半徑R時允許的相對誤差限是多少4R3解:球體體積為V3則何種函數(shù)的條件數(shù)為CRV'R4R23p4VR33(V*)C(R*)3(R*)rprr又(V*)1r(R*)110.33R時允許的相對誤差限為故度量半徑3r1Y28,按遞推公式Y(jié)Y783(n=1,2,…)1006.設0n1n計算到Y(jié)。若取10078327.982(5位有效數(shù)字),試問計算將有多大誤差Y1001YY783解:100n1n1YY783100100991YY78310019998YY7831009897……1YY783100101YY100有100783依次代入后,1000即YY783,100078327.982,YY27.982若取1000(Y*)(Y)(27.982)1103210001的誤差限為Y100103。27.求方程x256x10的兩個根,使它至少具有4位有效數(shù)字(78327.982)。解:x256x10,故方程的x28783根應為1,2x287832827.98255.982故1x具有5位有效數(shù)字1111x287832287832827.98255.9820.017863x具有5位有效數(shù)字21N18.當N充分大時,怎樣求dx1x2N11x2N1dxarctan(N1)arctanN解N設arctan(N1),arctanN。則tanN1,tanN.N1N11x2dxarctan(tan())1tantanarctantantanN1Narctan1(N1)N1N2N1arctan1cm29.正方形的邊長大約為了100cm,應怎樣測量才能使其面積誤差不超過解:正方形的面積函數(shù)為A(x)x2(A*)2A*(x*).若(A*)1,x*100時,當(x*)1102則2故測量中邊長誤差限不超過0.005cm時,才能使其面積誤差不超過1cm2110.設Sgt,假定g是準確的,而對t的測量有0.1秒的誤差,證明當t增加時S的22絕對誤差增加,而相對誤差卻減少。解:S12gt2,t0(S*)gt2(t*)t*增加時,S*的絕對誤差增加當(S*)S*(S*)rgt2(t*)12g(t*)22(t*)t*t*增加時,(t*)保持不變,則S*的相對誤差減少。當11.序列y滿足遞推關(guān)系ny10y1(n=1,2,…),n1n若y21.41(三位有效數(shù)字),計算到y(tǒng)時誤差有多大這個計算過程穩(wěn)定嗎010y21.410解:(y*)110220y10y1n又n1y10y110(y*)10(y*)10y10y1又21(y*)10(y*)21(y*)102(y*)20......(y*)1010(y*)100101011022110821計算到y(tǒng)時誤差為108,這個計算過程不穩(wěn)定。21012.計算f(21)6,取2,利用下列等式計算,哪一個得到的結(jié)果最好11(322)399702,。,,(21)6(322)3解:設y(x1)6,1101x2,x1.4,則x*。2若*1若通過計算y值,則(21)61y(x*1)7x**6(x1)yx***7yx**若通過(322)3計算y值,則y*(32x*)2x*632xyx***yx**1若通過(322)3計算y值,則1y(32x*)4x**1(32x)yx***7yx**1通過計算后得到的結(jié)果最好。(322)313.f(x)ln(xx21),求f(30)的值。若開平方用6位函數(shù)表,改用另一等價公式。ln(xx21)ln(xx21)大若問求對數(shù)時誤差有多計算,求對數(shù)時誤差有多大解f(x)ln(xx21),f(30)ln(30899)設u899,yf(30)則u*u*142故y*u*u*1u*0.01673若改用等價公式ln(xx21)ln(xx21)則f(30)ln(30899)此時,y*u*u*1u*59.98337第二章插值法1.當x1,1,2時,f(x)0,3,4,求f(x)的二次插值多項式。解:x1,x1,x2,012f(x)0,f(x)3,f(x)4;012(xx)(xx)12(x1)(x2)2l(x)(xx)(xx)120010l(x)(xx)(xx)1(x1)(x2)(xx)(xx)60211012(xx)(xx)1l(x)(xx)(xx)3(x1)(x1)0122021則二次拉格朗日插值多項式為2L(x)yl(x)kk2k03l(x)4l(x)0212(x1)(x2)43(x1)(x1)56x2x37232.給出f(x)lnx的數(shù)值表Xlnxln0.54用線性插值及二次插值計算的近似值。解:由表格知,x0.4,x0.5,x0.6,x0.7,x0.8;01234f(x)0.916291,f(x)0.69314701f(x)0.510826,f(x)0.35667523f(x)0.2231444若采用線性插值法計算即ln0.54f(0.54),則0.50.540.6l(x)xx210(x0.6)xx112l(x)xx10(x0.5)1xx221L(x)f(x)l(x)f(x)l(x)111226.93147(x0.6)5.10826(x0.5)L(0.54)0.62021860.6202191ln0.54若采用二次插值法計算時,l(x)(xx)(xx)(xx)(xx)50(x0.5)(x0.6)1200102l(x)(xx)(xx)100(x0.4)(x0.6)02(xx)(xx)11012l(x)(xx)(xx)(xx)(xx)50(x0.4)(x0.5)0122021L(x)f(x)l(x)f(x)l(x)f(x)l(x)2001122500.916291(x0.5)(x0.6)69.3147(x0.4)(x0.6)0.51082650(x0.4)(x0.5)L(0.54)0.615319840.6153202cosx,0x903.給全h1(1/60),若函數(shù)表具有的函數(shù)表,步長5位有效數(shù)字,研cosx究用線性插值求近似值時的總誤差界。cosx近似值時,誤差解:求解可以分為兩個部分,一方面,x是近似值,具有5位有效數(shù)cosx字,在此后的計算過程中產(chǎn)生一定的誤差傳播;另一方面,利用插值法求函數(shù)的近似值時,采用的線性插值法插值余項不為0,也會有一定的誤差。因此,總誤差界的計算應綜合以上兩方面的因素。當0x90時,令f(x)cosx取x0,h()116060180108000令xxih,i0,1,...,5400i0則x9025400當xx,x時,線性插值多項式為kk1L(x)f(x)xxk1f(x)xxkxxxx1kk1kk1k1k插值余項為1f()(xx)(xx)R(x)cosxL(x)12kk1cosx0,1,故計算中有誤差傳播又在建立函數(shù)表時,表中數(shù)據(jù)具有5位有效數(shù)字,且過程。(f*(x))11052kxxxxxxk1R(x)(f*(x))k(f*(x))k1x2k1xkk1k1kxxkxxxxk(f*(x))(k)xx11kk1k1k(f*(x))1(xxxx)hk1kk(f*(x))k總誤差界為RR(x)R(x)121(cos)(xx)(xx)(f*(x))2kk1k1(xx)(xx)(f*(x))2kk1k11(h)2(f*(x))k221.06108110520.501061054.設為互異節(jié)點,求證:nxkl(x)xk(k0,1,,n);jj(1)j0n(xx)kl(x)0(k0,1,,n);(2)證明jjj0(1)令f(x)xk若插值節(jié)點為x,j0,1,,n,則函數(shù)f(x)的n次插值多項式為L(x)xkl(x)。njnjjj0()(n1)插值余項為R(x)f(x)L(x)f(n1)!(x)n1nn又kn,f(n1)()0R(x)0nnxkl(x)xkjj(k0,1,,n);j0(2)n(xx)kl(x)jjj0n(Cjxi(x)ki)l(x)nkjjj0i0nnCi(x)(xil(x))kikjji0j0又0in由上題結(jié)論可知nxkl(x)xijjj0原式nCi(x)xikiki0(xx)k0得證。5設f(x)C2a,b且f(a)f(b)0,求證:maxf(x)1(ba)2maxf(x).8axbaxbxa,xb,以此為插值節(jié)點,則線性插值多項式為解:令01L(x)f(x)xx1f(x)xx0xxxx101010=f(a)axbbf(b)xxaa又f(a)f(b)0L(x)011f(x)(xx)(xx)插值余項為R(x)f(x)L(x)12011f(x)f(x)(xx)(xx)012又(xx)(xx)0112(xx)(xx)01214(xx)21014(ba)2maxf(x)1axb(ba)max().fx28axb6.在4x4exf(x)ex的等距節(jié)點函數(shù)表,若用二次插值求的近似值,要使上給出10截斷誤差不超過,問使用函數(shù)表的步長h應取多少6x,x和x,則分段二次插值多項式的插值余項為解:若插值節(jié)點為ii1i1R(x)1f()(xx)(xx)(xx)3!2i1ii1R(x)1(xx)(xx)(xx)maxf(x)62i1ii14x4設步長為xxh,xxhh,即i1ii1iR(x)1e2h3e4h3.3463327210若截斷誤差不超過,則6R(x)10623e4h310627h0.0065.y2,求4y及4y.,7.若nnnn解:根據(jù)向前差分算子和中心差分算子的定義進行求解。y2nn4y(E1)4ynn44(1)E4jynjjjjj044(1)y4njjj044(1)2y4jjnj0(21)4ynyn2n114y(E2E2)4ynn1(E2)4(E1)4ynE24ynyn22n2f(x)是m次多項式,記f(x)f(xh)f(x),證明f(x)的k階差分f(x)0(l為正整數(shù))8.如果kf(x)(0km)是mk次多項式,并且1。m解:函數(shù)f(x)的Taylor展式為f(x)h21f(m)(x)hm11(m1)!f(m1)f(xh)f(x)f(x)h其中(x,xh)()hm12m!f(x)是次數(shù)為m的多項式又f(m1)()0f(x)f(xh)f(x)f(x)hf(x)h21f(x)hm1m()2m!f(x)為階多項式m12f(x)(f(x))2f(x)m2階多項式為f(x)是mk次多項式依此過程遞推,得kmf(x)是常數(shù)當為正整數(shù)時,lm1f(x)09.證明(fg)fggfkkkkkk1證明(fg)fgfgkkk1k1kkfgfgfgfgk1k1kk1kk1kkg(ff)f(gg)k1k1kkk1kgffgk1kkkkfggfkkk1得證n1k1n110.證明fgfgfggfkknn00kk0k0證明:由上題結(jié)論可知fg(fg)gfkkkkk1kn1fgkkk0n1((fg)gf)kkk1kk0n1n1k0(fg)gfk1kkkk0(fg)fgfgkkk1k1kkn1(fg)kkk0(fgfg)(fgfg)(fgfg)11002211nnn1n1fgfg00nnn1k1n1k0fgfgfggfkknn00kk0得證。

11.證明n1yyy02jnj0n1n1y)證明2y(yj1jjj0j0(yy)(yy)(yy)1021nn1yyn0得證。f(x)aaxaxn1axn有n個不同實根x,x,,x,若12.01n1n12n0,0kn2;f(x)n01,kn1n:xkj證明j1jf(x)有個不同實根x,x,,xn證明:12且f(x)aaxaxn1axn01n1nf(x)a(xx)(xx)(xx)n12n(x)(xx)(xx)(xx)n令則n12xxkknnjf(x)ja(x)j1j1jnnj而(x)(xx)(xx)(xx)(xx)(xx)(xx)n23n13n(xx)(xx)(xx)12n1(x)(xx)(xx)(xx)(xx)(xx)njj1j2jj1jj1jn令g(x)xk,xkngx,x,,xnj(x)12j1njxkn則gx,x,,xnj(x)12j1nj1xkj又nf(x)agx,x,,xn12j1jn0,0kn2;f(x)n01,kn1xkjnj1j得證。13.證明n階均差有下列性質(zhì):(1)若F(x)cf(x),則Fx,x,,xcfx,x,,x;01n01n(2)若F(x)f(x)g(x),則Fx,x,,xfx,x,,xgx,x,,x.01n01n01n證明:()fxjnfx,x,,xn(1)(xx)(xx)(xx)(xx)12j0j0jj1jj1jn()FxjnFx,x,,xn(xx)(xx)(xx)(xx)j112j0j0jjj1jncf(xj)n(xx)(xx)(xx)(xx)j0j0jj1jj1jnf(xj)c(n)(xx)(xx)(xx)(xx)j0j0jj1jj1jncfx,x,,xn01得證。(2)F(x)f(x)g(x)()FxjFx,,xn(xx)(xx)(xx)(xx)0nj0j0jj1jj1jnf(xj)g(xj)(xx)(xx)(xx)(xx)nj0j0jj1jj1jnf(xj)n)(xx)(xx)(xx)(xx)j0j0jj1jj1jng(xj)n)+(xx)(xx)(xx)(xx)j0j0jj1jj1jnfx,,xgx,,x0n0n得證。14.f(x)x7x43x1,求F2,21,,2,21,,2。8070f(x)x7x43x1解:若x2i,i0,1,,8i()則fx,x,,xf(n)n!01n()7!fx,x,,xf(7)17!7!017()0fx,x,,xf(8)8!01815.證明兩點三次埃爾米特插值余項是R(x)f(4)()(xx)2(xx)2/4!,(x,x)3kk1kk1解:若x[x,x],且插值多項式滿足條件kk1H(x)f(x),H(x)f(x)3kk3kkH(x)f(x),H(x)f(x)3k1k13k1k1插值余項為R(x)f(x)H(x)3由插值條件可知R(x)R(x)0kk1且R(x)R(x)0kk1R(x)可寫成R(x)g(x)(xx)2(xx)2kk1其中g(shù)(x)是關(guān)于x的待定函數(shù),現(xiàn)把x看成[x,x]上的一個固定點,作函數(shù)k1k(t)f(t)H(t)g(x)(tx)2(tx)2k3k1根據(jù)余項性質(zhì),有(x)0,(x)0kk1(x)f(x)H(x)g(x)(xx)2(xx)23kk1f(x)H(x)R(x)30(t)f(t)H(t)g(x)[2(tx)(tx)22(tx)(tx)2]3kk1k1k(x)0k(x)0k1由羅爾定理可知,存在(x,x),使(x,x)和kk12()0,()01(x)[,]即在xx上有四個互異零點。kk1(t)(t)根據(jù)羅爾定理,在的兩個零點間至少有一個零點,故(t)(,)在xx內(nèi)至少有三個互異零點,kk1(t)(x,x)依此類推,在內(nèi)至少有一個零點。kk1(4)(x,x)使k記為k1()f(4)()H(4)()4!g(x)0(4)3H(4)(t)03又g(x)f(4)(),(x,x)k4!k1其中依賴于xR(x)f(4)()(xx)2(xx)24!kk1x(k0,1,,n),設步長為h,即米特插值時,若節(jié)點為k分段三次埃爾xxkh,k0,1,,n在小區(qū)間[x,x]上k0kk1R(x)f(4)()(xx)2(xx)24!kk1R(x)4!1f(4)()(xx)2(xx)2kk14!1(xx)2(xx)2maxf(4)(x)kk1axb1xxxx)2]2maxf(4)(x)[(kk124!axb11h4maxf(4)(x)4!24axbh4maxf(4)(x)axb38416.求一個次數(shù)不高于4次的多項式P(x),使它滿足P(0)P(0)0,P(1)P(1)0,P(2)0解:利用埃米爾特插值可得到次數(shù)不高于4的多項式x0,x101y0,y101m0,m10111H(x)y(x)m(x)j3jjjj0j0xx)(xxxxxx010(x)(12)20110(12x)(x1)2xx)(xx(x)(12)21xxxx001101(32x)x2(x)x(x1)2(x)(x1)x201H(x)(32x)x2(x1)x2x32x23設P(x)H(x)A(xx)2(xx)2301其中,A為待定常數(shù)P(2)1P(x)x32x2Ax2(x1)2A141P(x)x2(x3)2從而417.設f(x)1/(1x2),在5x5n10I(x)上取,按等距節(jié)點求分段線性插值函數(shù),hI(x)與f(x)值,并估計誤差。計算各節(jié)點間中點處的h解:若x5,x5010則步長h1,xxih,i0,1,,10i01f(x)1x2[x,x]在小區(qū)間上,分段線性插值函數(shù)為ii1I(x)xxf(x)xxf(x)i1i1ixxxxhiii1i1i11(xx)i11x2(xx)1xi2ii1各節(jié)點間中點處的I(x)與f(x)的值為h當x4.5時,f(x)0.0471,I(x)0.0486h當x3.5時,f(x)0.0755,I(x)0.0794h當x2.5時,f(x)0.1379,I(x)0.1500h當x1.5時,f(x)0.3077,I(x)0.3500h當x0.5時,f(x)0.8000,I(x)0.7500h誤差maxf(x)I(x)hmaxf()28hxixxi15x51f(x)1x2又2xf(x)(1x2)2,6x22f(x)(1x)2324x24x3(1x2)4f(x)f(x)0令1和x03f(x)的駐點為得x1,2f(x)1,f(x)221,23maxf(x)I(x)14h5x518.求f(x)x2在[a,b]上分段線性插值函數(shù)I(x),并估計誤差。h解:在區(qū)間[a,b]hmaxhxa,xb,hxx,i0,1,,n1,上,0nii1ii0in1f(x)x2f(x)函數(shù)在小區(qū)間[x,x]上分段線性插值函數(shù)為ii1I(x)xxf(x)xxf(x)ixxi1i1xxhii1ii1i1[x2(xx)x2(xx)]hi1i1iii誤差為maxf(x)I(x)1maxf()h28hixxxabii1f(x)x2f(x)2x,f(x)2maxf(x)I(x)h24haxb19.求f(x)x4在[a,b]上分段埃爾米特插值,并估計誤差。解:在區(qū)間上,xa,xb,hx[a,b]x,i0,1,,n1,i0nii1令hmaxhi0in1f(x)x4,f(x)4x3函數(shù)f(x)[x,x]i在區(qū)間上的分段埃爾米特插值函數(shù)為i1I(x)(xxxxi1)2(12xx)f(x)iixxihii1i1(xx)2(12xx1)f(x)iixxixxi1i1ii1xx(xxi1)2(xx)f(x)iiii1xx()2(xx)f(x)i1i1ixxii1x4(xx)2(h2x2x)ihi1ii3ix(xx)2(h2x2x)4i1h3iii1i4x3(xx)2(xx)iih2ii14x(xx)2(xx)i3i1h2ii1誤差為f(x)I(x)h4!1f(4)()(xx)2(xx)2ii11maxf(4)()(i)4axbh242f(x)x4又f(4)(x)4!24maxf(x)I(x)maxhih416160in14haxb20.給定數(shù)據(jù)表如下:XjYj試求三次樣條插值,并滿足條件:(1)S(0.25)1.0000,S(0.53)0.6868;(2)S(0.25)S(0.53)0.解:hxx0.05010hxx0.09121hxx0.06232hxx0.08343hh,jj1jhhj1hhj1jjj5334,,,114571239241,,,11457230()()fxfxxx10fx,x0.95400101fx,x0.853312fx,x0.771723fx,x0.7150344(1)S(x)1.0000,S(x)0.686806f)5.52000d(fx,x0h120d6fx,xfx,x14.31573.26402.4300120hh011d6fx,xfx,x2231hh122d6fx,xfx,x3342hh2336(ffx,x)2.1150434d4h3由此得矩陣形式的方程組為5.520021M0592M4.315714141322M3.2640552342M2.43007732.115012M4求解此方程組得M2.0278,M1.464301M1.0313,M0.8070,M0.6539234三次樣條表達式為(xx)3M(xx)3S(x)Mj1j6h6hjj1jj(yMh2)xxMhxx2(yj1)j(j0,1,,n1)hj6jj1hj1j6jjj將M,M,M,M,M代入得012346.7593(0.30x)34.8810(x0.25)310.0169(0.30x)10.9662(x0.25)x0.25,0.302.7117(0.39x)31.9098(x0.30)36.1075(0.39x)6.9544(x0.30)x0.30,0.39S(x)2.8647(0.45x)32.2422(x0.39)310.4186(0.45x)10.9662(x0.39)x0.39,0.451.6817(0.53x)31.3623(x0.45)38.3958(0.53x)9.1087(x0.45)x0.45,0.53(2)S(x)0,S(x)0044.3157,d3.2640d2f0,d002.4300,d2f012d344400由此得矩陣開工的方程組為MM004920144.3157M352M3.264012522.4300M33027求解此方程組,得M0,M1.880901M0.8616,M1.0304,M0234又三次樣條表達式為(xx)3M(xx)3S(x)Mj1j6h6hjj1jj(yMh2)xxMhxx2(yj1)j6jj1hj1jj6hjjj將M,M,M,M,M代入得012346.2697(x0.25)310(0.3x)10.9697(x0.25)x0.25,0.303.4831(0.39x)31.5956(x0.3)36.1138(0.39x)6.9518(x0.30)x0.30,0.39S(x)2.3933(0.45x)32.8622(x0.39)310.4186(0.45x)11.1903(x0.39)x0.39,0.452.1467(0.53x)38.3987(0.53x)9.1(x0.45)x0.45,0.5321.若f(x)C2a,b,S(x)是三次樣條函數(shù),證明:S(x)2dx(1)f(x)dxb2baaf(x)S(x)dx2S(x)f(x)S(x)2dxb2baa若f(x)S(x)(i0,1,,n),式中為插值節(jié)點,axxxb,則x(2)且iii01nS(x)f(x)S(x)dxbS(b)f(b)S(b)S(a)f(a)S(a)a證明:(1)f(x)S(x)2dxbaS(x)dx2bf(x)S(x)dxf(x)dxb2b2aaaS(x)dx2S(x)f(x)S(x)dxf(x)dxb2b2baaa從而有S(x)2dxf(x)dxb2baaf(x)S(x)dx2S(x)f(x)S(x)dxb2baa第三章函數(shù)逼近與曲線擬合1.f(x)sin2x,給出[0,1]上的伯恩斯坦多項式B(f,x)及B(f,x)。13解:f(x)sin,x[0,1]2伯恩斯坦多項式為B(f,x)nnf(k)P(x)nkk0n其中P(x)xk(1x)nkkk當n1時,1P(x)(1x)00P(x)x1B(f,x)f(0)P(x)f(1)P(x)1011(1x)sin(0)xsin220x當n3時,1P(x)(1x)3001P(x)x(1x)23x(1x)2013P(x)x2(1x)3x2(1x)123P(x)x3x333B(f,x)f(k)P(x)33nkk003x(1x)2sin3x2(1x)sinx3sin63232x(1x)253333x2(1x)x32x3336x232x221.5x0.402x20.098x32.當f(x)x時,求證B(f,x)xn證明:若f(x)x,則B(f,x)nnf(k)P(x)nkk0nknnknkk0kn(n1)(nk1)nxk(1x)nknk!k0(n1)[(n1)(k1)1]nxk(1x)nk(k1)!k1n1xk(1x)nkk1nk1nn1xk1x(1x)k1(n1)(k1)k1x[x(1x)]n1x3.證明函數(shù)1,x,,x線性無關(guān)n證明:aaxax2axn0,xR若012nx(k0,1,2,,n),對上式兩端在[0,1]上作帶權(quán)(x)1的內(nèi)積,得分別取k1n101a00a1110n1a2n1n此方程組的系數(shù)矩陣為希爾伯特矩陣,對稱正定非奇異,只有零解a=0。函數(shù)1,x,,xn線性無關(guān)。4。計算下列函數(shù)f(x)關(guān)于C[0,1]的f,f與f:12(1)f(x)(x1)3,x[0,1](2)f(x)x1,2(3)f(x)xm(1x)n,m與n為正整數(shù),(4)f(x)(x1)10ex解:(1)若f(x)(x1)3,x[0,1],則f(x)3(x1)02(0,1)f(x)(x1)3在內(nèi)單調(diào)遞增fmaxf(x)maxf(0),f(1)0x1max0,11fmaxf(x)maxf(0),f(1)0x1max0,11f(1(1x)6dx)12201[1(1x)7]1270771(2)若f(x)x,x0,1,則2fmaxf(x)120x1f1f(x)dx102(x12)dx11214f(1f2(x)dx)1220[1(x1)2dx]212036(3)若f(x)xm(1x)n,m與n為正整數(shù)x0,1時,f(x)0當f(x)mx(1x)xmn(1x)(1)m1nn1m(1nmx)mx(1x)m1n1mnmx(0,當)時,f(x)0mnmf(x)(0,)內(nèi)單調(diào)遞減在mnmx(當,1)時,f(x)0mnmf(x)(,1)在內(nèi)單調(diào)遞減。mx(nm,1)f(x)0fmaxf(x)0x1maxf(0),f(mnm)mmnn(mn)mnf1f(x)dx101xm(1x)ndx02(sin2t)m(1sin2t)ndsin2t02sin2mtcos2ntcost2sintdt0n!m!(nm1)!f[1x2m(1x)2ndx]122012[2sin4mtcos4ntd(sin2t)]01[22sin4m1tcos4n1tdt]20(2n)!(2m)![2(nm)1]!(4)若f(x)(x1)10exx0,1時,f(x)0當f(x)10(x1)9e(x1)9ex(9x)0x)(x1)(ex10f(x)[0,1]在內(nèi)單調(diào)遞減。fmaxf(x)maxf(0),f(1)0x1210ef1f(x)dx101(x1)10exdx0(x1)10ex110(x1)9exdx100105ef[1(x1)20e2xdx]1220347()4e2fg5。證明fg證明:f(fg)gfggfgfg6。對f(x),g(x)C1[a,b],定義(1)(f,g)f(x)g(x)dxbaf(x)g(x)dxf(a)g(a)(2)(f,g)ba問它們是否構(gòu)成內(nèi)積。解:(1)令f(x)C(C為常數(shù),且C0)則f(x)0而(f,f)bf(x)f(x)dxa這與當且僅當f0時,(f,f)0矛盾C[a,b]上的內(nèi)積1不能構(gòu)成。fxgxdxf(a)g(a),則(2)(,)()()b若fga(g,f)bg(x)f(x)dxg(a)f(a)(f,g),Ka(f,g)[f(x)]g(x)dxaf(a)g(a)ba[bf(x)g(x)dxf(a)g(a)]a(f,g)hC1[a,b],則(fg,h)b[f(x)g(x)]h(x)dx[f(a)g(a)]h(a)abf(x)h(x)dxf(a)h(a)f(x)h(x)dxg(a)h(a)baa(f,h)(h,g)(f,f)b[f(x)]2dxf2(a)0a若(f,f)0,則b[f(x)]2dx0,且f2(a)0af(x)0,f(a)0f(x)0即當且僅當f0時,(f,f)0.C[a,b]上的內(nèi)積1故可以構(gòu)成。17。令T*(x)T(2x1),x[0,1],試證T(x)是在[0,1]上帶權(quán)(x)*的正交xx2nnn多項式,并求T*(x),T*(x),T*(x),T*(x)。0123解:若T*(x)T(2x1),x[0,1],則nn1T*xTxPxdx()()()*nm01(21)(21)1TxTx0dxxx2nmxt1t[1,1],且令t(2x1),則,故2()()()1T*xTxxdx*nm01d(t1)1T(t)T(t)mt1(t1)22n1221T(t)T(t)1dt1t2nm11T(x)在區(qū)間[0,1]上帶權(quán)(x)又切比雪夫多項式*正交,且1x2k0,nm,nm1T(xT)(xd)0x1t22nm1,nm01的正交多項式。xx2T(x)[0,1](x)是在上帶權(quán)*nT(x)1,x[1,1]又0T*(x)T(2x1)1,x[0,1]00T(x)x,x[1,1]1T*(x)T(2x1)2x1,x[0,1]11T(x)2x21,x[1,1]2T*(x)T(2x1)222(2x1)218x28x1,x[0,1]T(x)4x33x,x[1,1]3T*(x)T(2x1)334(2x1)33(2x1)32x348x218x1,x[0,1]8。對權(quán)函數(shù)(x)1x2試求首項系數(shù)為1的正交多項式n(x),n0,1,2,3.[1,1],區(qū)間,解:(x)1x2[1,1],則區(qū)間上內(nèi)積為若(f,g)1f(x)g(x)(x)dx1定義,則(x)10(x)(x)(x)(x)n1n1nnn其中(x(x),(x))/((x),(x))nnnnn((x),(x))/((x),(x))nnnn1n1(x,1)/(1,1)011xxdx(1)2(1)xdx1210(x)x1(x2,x)/(x,x)11x3xdx(1)211x2(1)xdx210(x,x)/(1,1)11x2xdx(1)211(1)dxx21162515832(x)x252(x32x,x22)/(x22,x22)52555521x)(x22)(1x2)dx(x3512)(x22)(1x2)dx1(x25510(x22,x22)/(x,x)525521)(x22)(1x2)dx(x2511x2(1x2)dx1136(x)x32x2xx39x173570149。試證明由教材式(2.14)給出的第二類切比雪夫多項式族ux是[0,1]上帶權(quán)()n(x)1x2的正交多項式。證明:若U(x)sin[(n1)arccosx]1x2n令xcos,可得1U(xU)(x)1x2dxmn11sin[(m1)arccosx]sin[(n1)arccosx]dx1x210sin[(m1)sin[(n1)]d1cos2sin[(m1)sin[(n1)]d0當mn時,sin2[(m1)d01cos[2(m1)]d202當mn時,sin[(m1)sin[(n1)]d0sin[(m1)d{1cos(n1)}n100n11cos(n1)d{sin[(m1)]}m1n1cos(n1)cos(m1)d0mn11cos[(m1)]d{1sin[(n1)]}n10m1sin[(n1)]d{cos[(m1)]}0(n1)2(mn11)2sin[(n1)]sin[(m1)]d00[1(mn11)2]sin[(n1)]sin[(m1)]d00m1n1又mn,故()21sin[(n1)]sin[(m1)]d00得證。明切比雪夫多項式T(x)滿足微分方程10。證n(1x2)T(x)xT(x)n2T(x)0nnn證明:切比雪夫多項式為T(x)cos(narccosx),x1n從而有1T(x)sin(narccosx)n(n)1x2nsin(narccosx)1x2nn2T(x)nsin(narccosx)3cos(narccosx)1x2(1x2)2(1x2)T(x)xT(x)n2T(x)nnnnxsin(narccosx)n2cos(narccosx)1x2nxsin(narccosx)n2cos(narccosx)1x20得證。11。假設f(x)在[a,b]上連續(xù),求f(x)的零次最佳一致逼近多項式解:f(x)在閉區(qū)間[a,b]上連續(xù)2x,x[a,b],使存在1f(x)minf(x),1axbf(x)maxf(x),2axb1取P[f(x)f(x)]212[a,b]則x和x是上的2個輪流為“正”、“負”的偏差點。12由切比雪夫定理知P為f(x)的零次最佳一致逼近多項式。maxx3ax達到極小,又問這個解是否唯一12。選取常數(shù)a,使0x1解:令f(x)x3ax則f(x)在[1,1]上為奇函數(shù)maxx3ax0x1maxx3ax1x1f又f(x)的最高次項系數(shù)為1,且為3次多項式。(x)1()Tx與0的偏差最小。2333(x)14T(x)x3x3343從而有a3413。求f(x)sinx在[0,]上的最佳一次逼近多項式,并估計誤差。2解:f(x)sinx,x[0,]2f(x)cosx,f(x)sinx0af(b)f(a)2,ba12cosx,2xarccos20.880692f(x)0.771182af(a)f(x)f(b)f(a)ax2222ba00.10526于是得f(x)的最佳一次逼近多項式為2P(x)0.10526x1即2sinx0.10526x,0x2誤差限為sinxP(x)1sin0P(0)10.1052614。求f(x)ex0,1在0,1上的最佳一次逼近多項式。解:f(x)ex,x0,1f(x)ex,f(x)e0xaf(b)f(a)e1ba1ex2e1xln(e1)2f(x)ex2e12af(a)f(x)f(b)f(a)ax2222ba01(e1)(e1)ln(e1)221ln(e1)2于是得f(x)的最佳一次逼近多項式為P(x)e(e1)[x1ln(e1)]221(e1)x12[e(e1)ln(e1)]15。求f(x)x43x31在區(qū)間[0,1]上的三次最佳一致逼近多項式。解:f(x)x43x31,x[0,1]令t2(x1),則t[1,1]21122且xt1111f(t)(t)43(t)312222161(t410t324t222t9)令g(t)16f(t),則g(t)t10t24t22t9324g(t)為區(qū)間[1,1]上的最佳三次逼近多項式P(t)應滿足*3若maxg(t)P*(t)min31t1當g(t)P*(t)T(t)1(8t48t21)128334時,多項式g(t)P*(t)與零偏差最小,故31(t)g(t)T(t)*323410t325t222t7381f(x)的三次最佳一致逼近多項式為P(t),則f(x)的三次最佳一致逼近多項式*3進而,16為P*(t)1[10(2x1)325(2x1)222(2x1)]7316835x354x2x11294128f(x)x,在1,1上求關(guān)于span1,x,x16。24的最佳平方逼近多項式。解:f(x)x,x1,1若(f,g)1f(x)g(x)dx121,x2,x4,則且0122,522,0222,29122(f,)1,(f,)1,(f,)1,23012(,)1,(,),(,)2,257010212則法方程組為2221352221357222a0a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論