2023年河南省漯河市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第1頁(yè)
2023年河南省漯河市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第2頁(yè)
2023年河南省漯河市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第3頁(yè)
2023年河南省漯河市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第4頁(yè)
2023年河南省漯河市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年河南省漯河市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.橢圓的焦點(diǎn)坐標(biāo)是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

2.設(shè)全集={a,b,c,d},A={a,b}則C∪A=()A.{a,b}B.{a,c}C.{a,d)D.{c,d}

3.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]

4.AB>0是a>0且b>0的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件

5.函數(shù)f(x)=的定義域是()A.(0,+∞)B.[0,+∞)C.(0,2)D.R

6.A.B.C.D.

7.垂直于同一個(gè)平面的兩個(gè)平面()A.互相垂直B.互相平行C.相交D.前三種情況都有可能

8.設(shè)集合A={x|x≤2或x≥6},B={x||x-1|≤3},則為A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]

9.A≠ф是A∩B=ф的()A.充分條件B.必要條件C.充要條件D.無(wú)法確定

10.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b的值是()A.-2或12B.2或-12C.-2或-12D.2或12

11.己知|x-3|<a的解集是{x|-3<x<9},則a=()A.-6B.6C.±6D.0

12.已知全集U={2,4,6,8},A={2,4},B={4,8},則,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}

13.已知b>0,㏒5b=a,㏒b=c,5d=10,則下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c

14.若sinα=-3cosα,則tanα=()A.-3B.3C.-1D.1

15.一元二次不等式x2+x-6<0的解集為A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

16.由直線l1:3x+4y-7=0與直線l2:6x+8y+1=0間的距離為()A.8/5B.3/2C.4D.8

17.己知向量a

=(2,1),b

=(-1,2),則a,b之間的位置關(guān)系為()A.平行B.不平行也不垂直C.垂直D.以上都不對(duì)

18.函數(shù)f(x)=x2+2x-5,則f(x-1)等于()A.x2-2x-6

B.x2-2x-5

C.x2-6

D.x2-5

19.若不等式x2+x+c<0的解集是{x|-4<x<3},則c的值等于()A.12B.-12C.11D.-11

20.頂點(diǎn)坐標(biāo)為(-2,-3),焦點(diǎn)為F(-4,3)的拋物線方程是()A.(y-3)2=-4(x+2)

B.(y+3)2=4(x+2)

C.(y-3)2=-8(x+2)

D.(y+3)2=-8(x+2)

二、填空題(10題)21.則a·b夾角為_____.

22.圓x2+y2-4x-6y+4=0的半徑是_____.

23.函數(shù)y=3sin(2x+1)的最小正周期為

。

24.

25.

26.若lgx=-1,則x=______.

27.以點(diǎn)(1,0)為圓心,4為半徑的圓的方程為_____.

28.

29.

30.到x軸的距離等于3的點(diǎn)的軌跡方程是_____.

三、計(jì)算題(5題)31.己知直線l與直線y=2x+5平行,且直線l過(guò)點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

32.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

33.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.

34.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

35.近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

四、簡(jiǎn)答題(10題)36.化簡(jiǎn)

37.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值

38.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.

39.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.

40.已知cos=,,求cos的值.

41.已知是等差數(shù)列的前n項(xiàng)和,若,.求公差d.

42.據(jù)調(diào)查,某類產(chǎn)品一個(gè)月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產(chǎn)品一個(gè)月內(nèi)被投訴不超過(guò)1次的概率

43.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.

44.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

45.三個(gè)數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。

五、證明題(10題)46.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.

47.

48.若x∈(0,1),求證:log3X3<log3X<X3.

49.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.

50.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2

+(y+1)2

=8.

51.△ABC的三邊分別為a,b,c,為且,求證∠C=

52.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.

53.長(zhǎng)、寬、高分別為3,4,5的長(zhǎng)方體,沿相鄰面對(duì)角線截取一個(gè)三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

54.己知sin(θ+α)=sin(θ+β),求證:

55.己知

a

=(-1,2),b

=(-2,1),證明:cos〈a,b〉=4/5.

六、綜合題(2題)56.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.

57.己知點(diǎn)A(0,2),5(-2,-2).(1)求過(guò)A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過(guò)橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.

參考答案

1.D

2.D集合的運(yùn)算.C∪A={c,d}.

3.B

4.Ba大于0且b大于0可得到到ab大于0,但是反之不成立,所以是必要條件。

5.Bx是y的算術(shù)平方根,因此定義域?yàn)锽。

6.B

7.D垂直于一個(gè)平面的兩個(gè)平面既可能垂直也可能平行還可能相交。

8.A由題可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。

9.A

10.D圓的切線方程的性質(zhì).圓方程可化為C(x-l)2+(y-1)2=1,∴該圓是以(1,1)為圓心,以1為半徑的圓,∵直線3x+4y=

11.B

12.C

13.B對(duì)數(shù)值大小的比較.由已知得5a=6,10c=6,∴5a=10c,∵5d=10,∴5dc=10c,則55dc=5a,∴dc=a

14.A同角三角函數(shù)的變換.若cosα=0,則sinα=0,顯然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.

15.A

16.B點(diǎn)到直線的距離公式.因?yàn)橹本€l2的方程可化為3x+4y+1/2=0所以直線l1與直線l2的距離為=3/2

17.C

18.Cf(x-1)=(x-1)2+2(x-1)-5=x2-2x+1+2x-2-5=x2-6,故選C。

19.B

20.C四個(gè)選項(xiàng)中,只有C的頂點(diǎn)坐標(biāo)為(-2,3),焦點(diǎn)為(-4,3)。

21.45°,

22.3,

23.

24.10函數(shù)值的計(jì)算.由=3,解得a=10.

25.π/3

26.1/10對(duì)數(shù)的運(yùn)算.x=10-1=1/10

27.(x-1)2+y2=16圓的方程.當(dāng)圓心坐標(biāo)為(x0,y0)時(shí),圓的-般方程為(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16

28.x+y+2=0

29.(1,2)

30.y=±3,點(diǎn)到x軸的距離就是其縱坐標(biāo),因此軌跡方程為y=±3。

31.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過(guò)點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4

32.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

33.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

34.

35.

36.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

37.

38.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=

39.

40.

41.根據(jù)等差數(shù)列前n項(xiàng)和公式得解得:d=4

42.設(shè)事件A表示“一個(gè)月內(nèi)被投訴的次數(shù)為0”,事件B表示“一個(gè)月內(nèi)被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

43.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵

若時(shí)

故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)

44.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。

(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,

45.由已知得:由上可解得

46.

∴PD//平面ACE.

47.

48.

49.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知

:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B

50.

51.

52.

53.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長(zhǎng)方體的體積減去所截的三棱錐的體積,即

54.

55.

56.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過(guò)點(diǎn)(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標(biāo)軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當(dāng)a=4時(shí),b

=4,此時(shí)r=4,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論