《橢圓及其標準方程》_第1頁
《橢圓及其標準方程》_第2頁
《橢圓及其標準方程》_第3頁
《橢圓及其標準方程》_第4頁
《橢圓及其標準方程》_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

《橢圓及其標準方程》一、教材分析本節(jié)課是人教A版高中數(shù)學選修1-1第二章《圓錐曲線與方程》的第2.1.1節(jié)《橢圓及其標準方程》的內容。這節(jié)課是橢圓的起始課,在此之前,學生對橢圓的理解主要來自于直覺感知,理解較為膚淺,為了使學生掌握橢圓的本質特征,本節(jié)課先設計讓學生用細繩和鉛筆動手畫橢圓,分析生成橢圓的幾何條件,并給橢圓下定義,讓學生經(jīng)歷從具體情境中抽象出橢圓模型的過程,再使用求曲線方程的方法推導出橢圓的標準方程,讓學生從形與數(shù)兩個方面全面理解橢圓及其標準方程。這節(jié)課內容既是對前面求曲線方程方法的具體使用,也是后面學習圓錐曲線方程及其性質的基礎,具有承前啟后的作用。二、教學目標知識目標:1、橢圓的定義、焦點、焦距;2、橢圓的標準方程水平目標:1、使學生理解并掌握橢圓的定義、焦距;2、使學生掌握橢圓的標準方程及其推導方法。情感目標:1、培養(yǎng)學生運動變化的觀點;2、增強學生求美、求簡的意識。三、教學重點與難點1.教學重點:橢圓的定義與標準方程。2.教學難點:橢圓標準方程的推導 比較復雜的根式化簡。四、教學方法

啟發(fā)式,探究式五、教學過程設計問題設計意圖師生活動1、請同學們在日常生活中尋找(或從網(wǎng)上查找)橢圓的形象。從感性理解入手,讓學生通過自己的努力,體會橢圓在各領域中的廣泛應用。學生回答。如:地球運行軌道。圓錐、圓柱的斜截面。教師展示學生尋找的橢圓模型。2、如何畫橢圓的呢?培養(yǎng)學生觀察水平,類比圓的畫法,解決問題。學生動手操作。教師可提示注意事項:〈1〉固定在兩點F「F2,〈2〉固定名繩長大于|F1F2|〈3〉套上鉛筆,拉動細繩移動筆尖。3、通過畫橢圓觀察這條曲線上所有點滿足的幾何條件是什么?培養(yǎng)學生觀察水平歸納總結水平,為形成橢圓定義奠定基礎。共析畫圖過程中的變”與“不E變”的條件討F1,MF2都在變化,但1MF11+1MF21的長度保持不變。4、給出橢圓定義。把平面內與兩個定點F1,耳,的距離之和等于常數(shù)(大于1F』』)的點的軌跡叫做橢圓。兩個定點叫做橢圓的焦點;兩點間的距離叫做橢圓的焦距(板書)。5、為什么常數(shù)必須大于1旭?讓學生注意到形成橢圓的條件。師生共析,總結:(1)IMF1|+IMF2|>IF1F2時為橢圓;(2)|MF1I+IMF2I=IF1F2時為線段;(3)IMF1I+IMF2I<

1F1F2I時不表示任何圖形。問題設計意圖師生活動6、如何用集合表示M點所滿足的幾何條件?使學生能將文字語言轉化為數(shù)學語言,為推導橢圓標準方程做鋪墊。學生回答:教師板書P={M1MF11+1MF21=2a}7、我們怎樣建立坐標系,求橢圓的標準方程呢?推導曲線方程時,建立坐標系要適當。使學生清楚一般的建系原則:原點取定點或定線段的中點,坐標軸取定直線或圖形的對稱軸上。師生共同分析橢圓的特征(如:對稱性),使方程比較簡單;以線F1F2的中心為原心,以F1F2垂直平分線為Y軸(或X軸),建立直角坐標系。(兩種建系方案)完成“建系”,設動點M(x,y)是橢圓上的任意一點,橢圓的焦距為2c(C>0),則F1(—C,0),F2(C,0),又設M與F1、F2的距離和等于2a(板書)8、請同學們來表示M到F1、F2的距離1MF11,1MF21鞏固已學過的兩點距離公式,為推導標準方程做準備。1MF11=J(x-c)2+y21MF21=<1(x-c)2+y2由P={M|MF1|+|MF2|=29、如何整理化簡上式?a},得(((x—c)2+y2+([(x—c)24鞏固根式化簡----兩邊平方。y2=2a教師展示化簡過程。得橢圓形標準方程:x242=1(a>b>0)a2 b2焦點在X軸上;焦點在Y軸上的橢圓標準方程E+xl=1程:a2 b2(a>b>0)

問題設計意圖師生活動10、仔細觀察橢圓的兩個標準方程有特點是什么?如何區(qū)別它們?讓學生深入理解橢圓的兩個標準方程教師引導學生總結。(1)形式:左邊是兩個分式的平方和,右邊是1;(2)方程中,X2和Y2的分母哪一個大,則焦點在哪一個軸上;(3)由橢圓標準方程能夠求出三個參數(shù)的a,b,c值;(4)方程中三個參數(shù)滿足a2=b2+c211、知識應用例1 寫出適合下列條件的橢圓方程〈1〉a=3,b=1,焦點在x軸上?!?〉a=5,c=2,焦點在y軸上。(通過例1的練習,讓學生熟悉橢圓的標準方程)例2橢圓的兩個焦點坐標分別是(-4,0)、(4,0),橢圓上一點P到兩焦點的距離之和等于10,求橢圓的標準方程(通過例2的應用,讓學生熟悉橢圓的定義并提煉求標準方程的方法)12、歸納總結:一個概念一一橢圓的概念;二個方程一一橢圓的兩個標準方程;二個方法一一根式化簡方法和求標準方程的方法;二個意識 求簡、求美的意識。13、布置作業(yè):課本習題2.1A組P423題,完成課堂練習。六、教學反思本節(jié)課的內容大體可分為三塊:橢圓的概念、橢圓的標準方程、知識應用。之前學生對橢圓的認識只是直觀感知,通過本節(jié)課學習使學生從感性認識上升為理性認識,形成正確的橢圓概念,所以理解橢圓的本質特征是掌握橢圓概念的關鍵。為此,設計了三個問題幫助學生認識橢圓的概念。接下來從引導如何建系到推出兩個標準方程也設計了四個問題,使學生能夠循循漸進、逐層深入地理解橢圓標準方程的推導過程,從而得到橢圓的標準方程。第八個問題是為知識應用打基礎的,要想應用知識首先就要分清這兩個標準方程,所以后面的兩個例題就是針對兩個標準方程而設計的。由于前兩個內容為這節(jié)課的重點占去了大部分的時間,所以知識應用的時間就有點倉促,題型也很基

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論