彈性力學(xué)課件三_第1頁
彈性力學(xué)課件三_第2頁
彈性力學(xué)課件三_第3頁
彈性力學(xué)課件三_第4頁
彈性力學(xué)課件三_第5頁
已閱讀5頁,還剩48頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2Theoryofplaneproblems2.1PlaneStressandPlaneStrain2.2DifferentialEquationsofEquilibrium2.3StressataPoint.PrincipalStresses2.4GeometricalEquations.Rigid-bodyDisplacements2.5StrainataPoint2.6PhysicalEquations2.7BoundaryConditions2.8Saint-Venant’sPrinciple2.9SolutionofPlaneProbleminTermsofDisplacements2.10SolutionofPlaneProbleminTermsofStresses

2.12Airy’sStressFunction.InverseMethodandSemi-InverseMethod2.11CaseofConstantBodyForces2.1.PLANESTRESSANDPLANESTRAINIfAbodyhasaparticularshape.

Theexternalforcesaredistributedinaparticularmanner.Thespatialproblem

PlanestressproblemPlanestrainproblemAplaneproblem

1)Planestress

a.Theshapeofthebody:Thinplate:thicknesstthelengthsoftheotherdimensionsxyozoytb.Mannerofexternalforces:Surfaceforces:loadontheedges,areparalleltothefacesand

distributeuniformlyoverthethickness.Bodyforces:areparalleltothefacesand

distributeuniformlyoverthethickness.xyozoytSincetheplateisverythinandtheexternalforcesareuniformlydistributedoverthethickness,thestresscomponentsz,

zxand

zy

maybeconsideredaszerowithinthewholeplate:z=0zx=0zy=0

zxz=+t/2=0zyz=+t/2=0zz=+t/2=0Notingtheabsenceofsurfaceforcesonthefacesoftheplate,wehave:Theremainingstresscomponentsx,

yand

xyforthesamereason,maybeconsideredtobefunctionsofx

and

y

only:x=f1(x,y)

y=f2(x,y)

xy=f3(x,y)Suchaproblemiscalledaplanestressproblemandthethinplateistobeinaplanestresscondition.yzxa.Theshapeofthebody::Verylongcylindricalorprismaticalbodyb.Mannerofexternalforces:(1)beparalleltoacrosssection(2)don’tveryalongtheaxialdirection2)Planestrain

(2)Duetosymmetry(everycrosssectionbeingaplaneofsymmetry),theshearingstresseszxandzymustbezero:

zx=0zy=0

(1)Ifthebodywereofinfinitelength,allcomponentsofstress,strainanddisplacementwouldnotvaryintheaxialdirection.Withanycrosssectionofthebodyasxyplane,thecomponentswillbefunctionsofxandyonly.Forexample:

x=f1(x,y)

y=f2(x,y)

xy=f3(x,y)(3)

Therewillbenormalstress

z

onacrosssectionduetothemutualconstraintbetweenthematerialsontwosidesofthecrosssection.

(4)Alsoduetosymmetry,anypointofthebodywillnotmoveintheaxialdirection,andwehavew=0.Suchproblemshouldhavebeencalledaplanedisplacementproblem.Buttraditionally,ithasbeencalledaplanestrainproblem.xyOIsolateanelementintheformofarectangular.

t=12.2DIFFERENTIALEQUATIONSOFEQUILIBRIUMyyxxyxcXYConsidertheequilibrium.yyxxyxXYxyoXYcMC=0(1)xy=yxX=0(2)Y=0(3)foraplaneproblemInthesetwoequations,therearethreeunknownfunctions.Hence,theelasticityproblemisstaticallyindeterminate.Tosolvefortheunknownstresses,wehavetoconsiderthestrainsanddisplacements.Inaplanestrainproblem,thenormalstresseszareinequilibriumthemselvesanddonotaffecttheformulationofaboveEqs..Whenthestresscomponentsx,y,xyatacertainpointPareknown,wecancomputethestressactingonanyplanepassingthroughthispoint,paralleltothezaxisbutinclinedtothexandyaxes.2.3STRESSATAPOINT.PRINCIPALSTRESSESyyxxyxXYxyoxyxyyxTakeaplaneABparalleltotheinclinedplaneconsideredandatasmalldistancefromP.t=1PA=dxPB=dyAB=dsyyxxyxxyoBAPsYNXNNNNThecosinesoftheanglesbetweentheoutwardnormaltotheplaneABare:cos(N,x)=lcos(N,y)=mSo:PA=m·dsPB=l·dsConsidertheequilibriumconditions:X=0yyxxyxxyoBAPsYNXNNNN-x·l·ds·1-xy·m·ds·1+XN·ds·1=0Whythebodyforcecomponentscanbeneglected?XN=lx+mxyY=0YN=my+lxyyyxxyxxyoBAPsYNXNNNNLetthenormalstressandshearingstressonABbeNandN,projectionofXNandYNonandperpendiculartothenormalNwillgiveN=lXN+mYNN=lYN-mXNThus,thenormalandshearingstressonanyplanedefinedbythedirectioncosinescaneasilybecalculated,providedthatthestresscomponentsx,yandxyatthepointPareknown.UsingtheexpressionsofXNandYN,weobtainN=l2x+m2y+2lmxyN=lm(y-x)+(l2-m2)xyxyoBAPYNXNNXN=lx+mxy=lYN=my+lxy=mIftheshearingstressonacertainplanethroughPvanishes,thatplaneiscalledaprincipalplaneatPandthenormalstressontheplaneiscalledaprincipalstressatP.SupposeABisaprincipalplane.2-(x+y)+(xy-xy2)=0Sincetheexpressionwithineachsignofsquarerootisalwayspositive,1and2mustberealquantities.ThisshowsthattwoprincipalstressesexistatthepointPAnd:1+2=x+yLet1betheanglebetween1andx.Then,Similarly,wecanobtaini.e.Because1+2=x+y2=x+y-1ThenWecanobtainThatexpressionshowsthatthetwoprincipalstressesareperpendiculartoeachother.xyOyyxxyxxyxyxy1122Whentheprincipalstressesatapointareknown,itisveryeasytodeterminethemaximumandminimumstressesatthepoint.Forsimplicityofanalysis,thexandyaxesareplacedinthedirectionsof1and2,respectively.xyxy1122Thus,wehave1=x2=yxy=0Thenormalstressonanyinclinedplanewillbe:xy1122N=l2x+m2y+2lmxy=l21+m22Therelationoflandmisl2+m2=1So,wecanobtainN=l21+(1-l2)2=l2(1-2)+2Whenl2=1,Nismaximum.Whenl2=0,Nisminimum.Whenl2=1,N=max=1Whenl2=0,N=min=2ThemaximumandminimumvaluesofNare1and2,respectively.TheshearingstressontheinclinedplaneisN=lm(y-x)+(l2-m2)xy=

lm(2-1)=

NWhen,theshearingstressNreachesitsextremevalues.Thisshowstheextremeshearingstressesareactingonplanesinclinedat450withthexzandyzplanes.xy1122NN2.4GEOMETRICALEQUATIONS.RIGID-BODYDISPLACEMENTSA’B’P’Taketwolineelements:PABxyoPA=dxPB=dyuvx:normalstrainofPAy:normalstrainofPBxyoryx:thechangeoftherightanglebetweenPAandPB.Thechangeis+.A’B’P’uvPABxyo

Then,wehavethefollowingthreegeometricalequations:Foragivensetofdisplacementcomponentsuandv,asdefinitefunctionsofxandy,thestraincomponentsaredefinedbytheserelations.whichexpresstherelationsbetweenthestraincomponentsandthedisplacementcomponentsinaplaneproblem.Foragivensetofstraincomponents,asdefinitefunctionsofxandy,however,thedisplacementcomponentsarenotwhollydeterminate.Letx=0,,y=0,xy=0u=f1(y)

v=f2(x)

u=f1(y)=u0-y

v=f2(x)=v0+x

Thesearethedisplacementcomponentscorrespondingtozerostrainsandbetherigid-bodydisplacements.u0andv0aretherigid-bodytranslationsinthexandydirections.istherigid-bodyrotation.Thiscanbeillustratedasfollows.TheresultantdisplacementisWhenonlyisdifferentfromzero,thedisplacementcomponentsofanypointofthebodyare:u=-yv=x

PxxyyrroLettheanglebetweenthedirectionofthisresultantdisplacementandtheyaxisbe,thenwehaveThisshowsthattheresultantdisplacementofPisperpendiculartotheradiallineOPandconsequentlyalongthetangentialdirectionatP.Theconstantistherigid-bodyrotationofthebodyaboutthezaxis.Pxxyyrru=yv=yoNowWeseethatanelasticbodycanhaveanyrigid-bodydisplacementsforzerostrains.Hence,atagivenstateofstrain,thebodymayhavedifferentrigid-bodydisplacementsunderdifferentconditionsofconstraint,reflectedbythedifferentvaluesoftheconstantsu0,v0and.Inordertodeterminetheactualdisplacementofthebody,theremustbethreeproperconditionsofconstraintforthedeterminationofthethreeconstants.2.5STRAINATAPOINTWhenthestraincomponentsx,y,xyatacertainpointPareknown,wecancalculatethenormalstrainofanylineelementPNparalleltoxyplaneandalsothechangeoftheanglebetweentwolineelementsPNandPN’paralleltoxyplane.xoPNN’uvyP1N1N1’111LetthecoordinatesP:(x,y)N:(x+dx,y+dy)thelengthofPN:drthedirectioncosinesofPN:landmSothatprojectionsofPNonthexandyaredx=ldr,dy=mdrxoPNN’uvyP1N1N1’111Displacementcomponents:P:uandvN:Hence,afterdeformation,whenPNisdisplacedtosomeposition,P1N1,theprojectionsofP1N1onthexandyaxesareIfwedenotethenormalstrainofPNbyN,thelengthofPNafterdeformationwillbeP1N1=dr+Ndrandwehavethegeometricalrelation(dr)2=(dx)2+(dy)2SinceNandthederivativetermsareverysmallincomparisonwithunit,theirsquaresandproductsmaybeneglectedandtheaboveequationreducestoSolvingitforN,andreplacingthederivativetermsbystraincomponents,weobtainNowweproceedtofindthechangeoftheanglebetweenPNandPN’.Afterdeformation,PNbecomesP1N1,whichhasdir

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論