今年課件與閱讀材料lecture_第1頁
今年課件與閱讀材料lecture_第2頁
今年課件與閱讀材料lecture_第3頁
今年課件與閱讀材料lecture_第4頁
今年課件與閱讀材料lecture_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

LectureSimultaneousmovegamesofcompleteNashInthiscourse,wemainlyconsidernon-cooperativegames.Non-cooperativegametheoryispositivetheory.Giventherulesofthegames,oneconsidersthe esofgamesusingvarioussolutionconcepts.Cooperativegametheoryisnormativetheory.Givennormativecriteria,oneconsiderswhetherthereisanysolutionthatsatisfiesthesecriteriaandwhetherthesolutionisuniqueifitexists.NashbargainingsolutionandShapleyvalueareverycommonusedsolutionconceptsfromcooperativegametheory.Non-cooperativegametheorystudiesstrategicinctionsamongyers.Ingames,thepayofftoayernotonlydependsonhis/herownchoice,butalsoonotheryers’choices.Therefore,whenoneconsidershis/herownchoice,he/sheshouldanticipateotheryers’choices.Thisisdifferentfromthecompetitivemarketwithoutexternalities,whereeachagentisassumedtobeapricetaker,andhis/heractiondoesnotdirectlyaffectotheragents.There,whenanagentmakesadecision,he/sheonlyconsiderstheprices,butnototheragents’choicesdirectly.Let’sconsiderthefollowingTwoyersareeachgivenanenvelopecontainingsomemoney.Theamountsofmoneycontainedinthetwoenvelopesaretwoadjacentnumbersinthesequence2,4,8,16,and32.Eachyeronlyknowstheamountofmoneyinhis/herownenvelope,butnotthatintheotheryer’s.Theythensimultaneouslydecidewhethertorequesttheexchangeoftheenvelopesbetweenthetwoyers.Ifbothyersrequesttheexchange,thentheexchangehappens.Otherwise,thereisnoexchange.Question:Supposeyourenvelopecontains8,shouldyouaskfortheWhenthisquestionwasaskedintheclass,about3/5ofthestudentssaidoneshould.Theother2/5saidoneshouldnot.Thosewhosayoneshouldreasonsthatthereis50%percentchancetheotherenvelopecontains18andonewillwin8and50%percentchancetheotherenvelopecontains4andonewillloss4.However,thisargumentimplicitlyassumesthattheotheryerwillalwaysaskfortheexchange.Thisassumptionisnottrue. with16theenvelopewillneveraskfortheexchangebecauseawith32intheenvelopewillneveraskfortheexchange.Therefore,oneshouldnotaskfortheexchangeifhis/herenvelopecontains8.Followingthisargument,nooneshouldaskfortheexchangeunlesshis/herenvelopecontains2.Consequently,theexchangewillnothappen.(TheseargumentsmaynotseemveryrigorousbuttheycanbemadeThefirstlessonwelearnfromthisexampleisthatonemustanticipatetheotherchoice,oneshould“standintheshoesoftheotheryer”andinferwhattheotheryerwilldo.Thisisthemostimportantmessagefromgametheory.Second,theargumentaboveisbasedonverystrongassumptionsabouttheyers.Whenoneholding4makesthedecision,he/sheassumesthattheoneholding8behavesrationally,he/shealsoassumesthattheoneholding8knowstheoneholding16behavesrationally,andthattheoneholding8knowstheoneholding16knowstheoneholding32behavesrationally;thatis,therationalityoftheyersiscommonknowledgeamongthem.Inmostofthiscourse,wewillassumecommonknowledgeofrationality,whichisaverystrongassumption.Apieceofinformationiscommonknowledgeifitannouncedtoallyerstogether.Third,ifotheryersarenotrational,arationalyermaywanttoydifferentlyfromwhatisarguedabove.Forexample,ifayerholding4knows3/5ofpeopleholding8willaskfortheexchange,thentheexpectedpayofffromaskingforthefortheexchange,andthereforetheyerholding4shouldaskfortheexchange.Ifotheryersarenotrational,knowingitandtakingitintoaccountisimportant.Inthiscourse,wewillconsiderthefollowingfourtypesofgameandthecorrespondingequilibriumconcepts:CompleteSimultaneousmove NashSequentialmovegame(dynamic Sub-gamePerfectNashplete BayesianSequential PerfectBayesianWewillalsodiscusssomeapplicationsofgameSimultaneousmoveElementsofasimultaneousmove(1)yers:i ,actionspace(orstrategyspace)ofeachs(s1,...,sI):astrategy

ui(s)R-payoffTwoyerfinitegamecanberepresentedbyaExample1:Prisoners’(1)prisoners:1and

payoffs:(s1,s2)(u1,u2(C,Nc)(0,(Nc,C)(9,(C,C)(6,

whereC→confess;NC→notMatrix-6,-0,--6,-0,--9,-1,-CisbetterthanNCregardlessoftheotheryers’action.u1(C,s2)u1(NC,s2for

s2S2CstrictlydominatesUnderlyingassumptionsEachprisoneronlycaresaboutThetwoyersythegameonlyTheeffectsofanythirdpartyinfluenceareallreflectedintheG{I,Si,ui;i1,...,

iscalledthenormalformofthe

u(s,s)()u(s',s

forall {s,..,s,

,...,s},thanwe

isistrictly(weakly)i

s',

'isstrictly(weakly)dominated

sisiDEF:Ifyeri’sstrategysi

strictlydominatesallhisotherstrategies,wesay

isastrictlydominantstrategyofyeriAstrategysisadominantstrategy

u(s*,s)u(s,s)forall andisi{s1,..,si1,si1,...,sI}.

Example2:Second-pricesealed-bidBidderssimultaneouslysubmittheirbids.Thehighestbidwinstheauctionbutonlypaysthesecondhighestbid.Elementsofthisn

ifbimaxbjj

ui

ifbip(Vh ifb Claim:Biddinghisownvaluation

isyeri’sweaklydominantFirst,itdoesnotpaytobidhigher

vi.Ifbidding

alreadywinsthethenbiddinghigherdoesnotchangeanything.Ifbidding

doesnotwinthethenvi<hiandwiningtheauctionbringsalosstoyeri.Inthiscase,biddingthan

maybringalosstoyerSecond,itdoesnotpaytobidlower

vi.Ifbidding

doesnotwinthethenbiddinglowerthan

doesnotchangeanything.Ifbidding

winsthethen

isthehighestbidandthepayofffromwinningtheauctionisnon-negative.thiscase,biddinglowerthan

mayleadtothelossofthisnon-negativeItedelimination(ordeletion)ofdominatedAn

Thereisnodominantstrategyinthisgame.yer1hasnodominantstrategy;yer2hasnodominantstrategyeither.ButRstrictlydominatesC,becauseyer2’spayofffromRisalwaysgreaterthanthatfromCregardlessofyer1’saction.Inotherwords,CisstrictlydominatedbyR,orCisastrictlydominatedstrategy.Therefore,yer2willneveryCandyer1knowsyer2willneveryC.WecantheneliminatecolumnCfromthematrixwithoutaffectingthe eofthegame.AftercolumnCiseliminated,MandDarestrictlydominatedbyUandthereforerowsMandDcanbeeliminatedwithoutaffectingthe eofthegame.AftercolumnMandDareeliminated,LisstrictlydominatedbyRandcanbeeliminated.Aftertheseroundsofelimination,onlythestrategyprofile(U,L)DEF:IfonlyonestrategyprofilesurvivesIESDS,wesaythegameissolvablebyIESDS.Andtheresultisthesolutionofthegame.Note1:TheassumptionbehindIESD:ItisCommonKnowledgethattheyersareNote2:Wheneliminatingweaklydominatedstrategies,thesolutionmaynotbewell-definedinthatitmaydependonthesequenceofelimination.Forexample,inthefollowinggame:U→L→MM→R→U2.4Nash {I,Si,ui;i1,...,

S*(s*,...,s*)isNashequilibrium,ifforanyyeri,u(s*,s*)u(s,s*)for sS,wheres*(s*,...,

,s*,...,s*)

Notes:(1)NEisaselfenforcingagreement(stableagreement);ifyersagreeS*(s*,...,s*),noonewantstounilallydeviatefromthe Forany

sisabestresponsetos*(s*,...,

,s*,...,s*)

Rationalexpectation:Ayerrespondsoptimallytohis/herbeliefaboutwhatyerswilldo,andthosebeliefsare

Thereisnodominantordominatedstrategy.ThisgamehasanuniqueNE(U,L).AprofileofdominantstrategiesmustbeaNashIfagameissolvablethroughIESDS,thenthesolutionmustbeaNashStrategiesinaNashequilibriumsurviveIESDS.EliminatingstrictlydominatedstrategiesdoesnotaffecttheNEs.SetofNashEquilibriumstrategiessetofstrategiesthatsurviveIESDS.TofindNashequilibrium,wecanalwayseliminatestrictlydominatedstrategiesfirst,withoutlosinganyequilibrium.RemarkofNash1,NoguaranteeofParetoefficiencybecauseof2,Itispossibleforallyertobenefitfromthereductionofpayoffsinsomef(x),X

f(x.f(x(沒有損失Gametheorypayoff被減少,可能反而雙方都還 困境的例子NC-1,--NC-1,--0,--6,-NC-1,--9,-N>3雙方都選(-1,-1)比原先的選擇(-6,-6)AnExampleofApplication:CournotCournotequilibrium(tycompetition)2producers;identicalproducts.P(Q)a

Ci(Q)The2firms

(Q1,Q2)simultaneouslyand1(Q1,Q2)(aQ1Q2)Q12(Q1,Q2)(aQ1Q2)Q2Q1Q2

Given

aQ2QC QacQ1(Optimalresponse

同理QacQ2聯(lián)立可以得到Q*Q*a Theintersectionofthetwooptimalresponsecurvesgivesusthe Theequilibrium

**

(a9Benark Iftheyerscancooperate:(Pareto=max(a-c-Q

(a4cc(ac)2**(a

Qa-cQ*Q*2(a- Reason:firmidoesn’ttakeaccountoftheeffectof(negativeexternality)

Qionthe

j|pNotes:InCournotduopoly,thetwoproducers’strategiesarestrategicEquilibriumWhentherearemultipleequilibria,canwe/howdowepickone:Case1:Purecoordinationgame:Therearetwoequilibriainthisgame:(U,L)and(D,R).Therefinementmaydependonofficialrulesandinformalsocialnorms.Forexample,drivinginvolvescoordination.Itissafeifalldrivers

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論