版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
LectureSimultaneousmovegamesofcompleteNashInthiscourse,wemainlyconsidernon-cooperativegames.Non-cooperativegametheoryispositivetheory.Giventherulesofthegames,oneconsidersthe esofgamesusingvarioussolutionconcepts.Cooperativegametheoryisnormativetheory.Givennormativecriteria,oneconsiderswhetherthereisanysolutionthatsatisfiesthesecriteriaandwhetherthesolutionisuniqueifitexists.NashbargainingsolutionandShapleyvalueareverycommonusedsolutionconceptsfromcooperativegametheory.Non-cooperativegametheorystudiesstrategicinctionsamongyers.Ingames,thepayofftoayernotonlydependsonhis/herownchoice,butalsoonotheryers’choices.Therefore,whenoneconsidershis/herownchoice,he/sheshouldanticipateotheryers’choices.Thisisdifferentfromthecompetitivemarketwithoutexternalities,whereeachagentisassumedtobeapricetaker,andhis/heractiondoesnotdirectlyaffectotheragents.There,whenanagentmakesadecision,he/sheonlyconsiderstheprices,butnototheragents’choicesdirectly.Let’sconsiderthefollowingTwoyersareeachgivenanenvelopecontainingsomemoney.Theamountsofmoneycontainedinthetwoenvelopesaretwoadjacentnumbersinthesequence2,4,8,16,and32.Eachyeronlyknowstheamountofmoneyinhis/herownenvelope,butnotthatintheotheryer’s.Theythensimultaneouslydecidewhethertorequesttheexchangeoftheenvelopesbetweenthetwoyers.Ifbothyersrequesttheexchange,thentheexchangehappens.Otherwise,thereisnoexchange.Question:Supposeyourenvelopecontains8,shouldyouaskfortheWhenthisquestionwasaskedintheclass,about3/5ofthestudentssaidoneshould.Theother2/5saidoneshouldnot.Thosewhosayoneshouldreasonsthatthereis50%percentchancetheotherenvelopecontains18andonewillwin8and50%percentchancetheotherenvelopecontains4andonewillloss4.However,thisargumentimplicitlyassumesthattheotheryerwillalwaysaskfortheexchange.Thisassumptionisnottrue. with16theenvelopewillneveraskfortheexchangebecauseawith32intheenvelopewillneveraskfortheexchange.Therefore,oneshouldnotaskfortheexchangeifhis/herenvelopecontains8.Followingthisargument,nooneshouldaskfortheexchangeunlesshis/herenvelopecontains2.Consequently,theexchangewillnothappen.(TheseargumentsmaynotseemveryrigorousbuttheycanbemadeThefirstlessonwelearnfromthisexampleisthatonemustanticipatetheotherchoice,oneshould“standintheshoesoftheotheryer”andinferwhattheotheryerwilldo.Thisisthemostimportantmessagefromgametheory.Second,theargumentaboveisbasedonverystrongassumptionsabouttheyers.Whenoneholding4makesthedecision,he/sheassumesthattheoneholding8behavesrationally,he/shealsoassumesthattheoneholding8knowstheoneholding16behavesrationally,andthattheoneholding8knowstheoneholding16knowstheoneholding32behavesrationally;thatis,therationalityoftheyersiscommonknowledgeamongthem.Inmostofthiscourse,wewillassumecommonknowledgeofrationality,whichisaverystrongassumption.Apieceofinformationiscommonknowledgeifitannouncedtoallyerstogether.Third,ifotheryersarenotrational,arationalyermaywanttoydifferentlyfromwhatisarguedabove.Forexample,ifayerholding4knows3/5ofpeopleholding8willaskfortheexchange,thentheexpectedpayofffromaskingforthefortheexchange,andthereforetheyerholding4shouldaskfortheexchange.Ifotheryersarenotrational,knowingitandtakingitintoaccountisimportant.Inthiscourse,wewillconsiderthefollowingfourtypesofgameandthecorrespondingequilibriumconcepts:CompleteSimultaneousmove NashSequentialmovegame(dynamic Sub-gamePerfectNashplete BayesianSequential PerfectBayesianWewillalsodiscusssomeapplicationsofgameSimultaneousmoveElementsofasimultaneousmove(1)yers:i ,actionspace(orstrategyspace)ofeachs(s1,...,sI):astrategy
ui(s)R-payoffTwoyerfinitegamecanberepresentedbyaExample1:Prisoners’(1)prisoners:1and
payoffs:(s1,s2)(u1,u2(C,Nc)(0,(Nc,C)(9,(C,C)(6,
whereC→confess;NC→notMatrix-6,-0,--6,-0,--9,-1,-CisbetterthanNCregardlessoftheotheryers’action.u1(C,s2)u1(NC,s2for
s2S2CstrictlydominatesUnderlyingassumptionsEachprisoneronlycaresaboutThetwoyersythegameonlyTheeffectsofanythirdpartyinfluenceareallreflectedintheG{I,Si,ui;i1,...,
iscalledthenormalformofthe
u(s,s)()u(s',s
forall {s,..,s,
,...,s},thanwe
isistrictly(weakly)i
s',
'isstrictly(weakly)dominated
sisiDEF:Ifyeri’sstrategysi
strictlydominatesallhisotherstrategies,wesay
isastrictlydominantstrategyofyeriAstrategysisadominantstrategy
u(s*,s)u(s,s)forall andisi{s1,..,si1,si1,...,sI}.
Example2:Second-pricesealed-bidBidderssimultaneouslysubmittheirbids.Thehighestbidwinstheauctionbutonlypaysthesecondhighestbid.Elementsofthisn
ifbimaxbjj
ui
ifbip(Vh ifb Claim:Biddinghisownvaluation
isyeri’sweaklydominantFirst,itdoesnotpaytobidhigher
vi.Ifbidding
alreadywinsthethenbiddinghigherdoesnotchangeanything.Ifbidding
doesnotwinthethenvi<hiandwiningtheauctionbringsalosstoyeri.Inthiscase,biddingthan
maybringalosstoyerSecond,itdoesnotpaytobidlower
vi.Ifbidding
doesnotwinthethenbiddinglowerthan
doesnotchangeanything.Ifbidding
winsthethen
isthehighestbidandthepayofffromwinningtheauctionisnon-negative.thiscase,biddinglowerthan
mayleadtothelossofthisnon-negativeItedelimination(ordeletion)ofdominatedAn
Thereisnodominantstrategyinthisgame.yer1hasnodominantstrategy;yer2hasnodominantstrategyeither.ButRstrictlydominatesC,becauseyer2’spayofffromRisalwaysgreaterthanthatfromCregardlessofyer1’saction.Inotherwords,CisstrictlydominatedbyR,orCisastrictlydominatedstrategy.Therefore,yer2willneveryCandyer1knowsyer2willneveryC.WecantheneliminatecolumnCfromthematrixwithoutaffectingthe eofthegame.AftercolumnCiseliminated,MandDarestrictlydominatedbyUandthereforerowsMandDcanbeeliminatedwithoutaffectingthe eofthegame.AftercolumnMandDareeliminated,LisstrictlydominatedbyRandcanbeeliminated.Aftertheseroundsofelimination,onlythestrategyprofile(U,L)DEF:IfonlyonestrategyprofilesurvivesIESDS,wesaythegameissolvablebyIESDS.Andtheresultisthesolutionofthegame.Note1:TheassumptionbehindIESD:ItisCommonKnowledgethattheyersareNote2:Wheneliminatingweaklydominatedstrategies,thesolutionmaynotbewell-definedinthatitmaydependonthesequenceofelimination.Forexample,inthefollowinggame:U→L→MM→R→U2.4Nash {I,Si,ui;i1,...,
S*(s*,...,s*)isNashequilibrium,ifforanyyeri,u(s*,s*)u(s,s*)for sS,wheres*(s*,...,
,s*,...,s*)
Notes:(1)NEisaselfenforcingagreement(stableagreement);ifyersagreeS*(s*,...,s*),noonewantstounilallydeviatefromthe Forany
sisabestresponsetos*(s*,...,
,s*,...,s*)
Rationalexpectation:Ayerrespondsoptimallytohis/herbeliefaboutwhatyerswilldo,andthosebeliefsare
Thereisnodominantordominatedstrategy.ThisgamehasanuniqueNE(U,L).AprofileofdominantstrategiesmustbeaNashIfagameissolvablethroughIESDS,thenthesolutionmustbeaNashStrategiesinaNashequilibriumsurviveIESDS.EliminatingstrictlydominatedstrategiesdoesnotaffecttheNEs.SetofNashEquilibriumstrategiessetofstrategiesthatsurviveIESDS.TofindNashequilibrium,wecanalwayseliminatestrictlydominatedstrategiesfirst,withoutlosinganyequilibrium.RemarkofNash1,NoguaranteeofParetoefficiencybecauseof2,Itispossibleforallyertobenefitfromthereductionofpayoffsinsomef(x),X
f(x.f(x(沒有損失Gametheorypayoff被減少,可能反而雙方都還 困境的例子NC-1,--NC-1,--0,--6,-NC-1,--9,-N>3雙方都選(-1,-1)比原先的選擇(-6,-6)AnExampleofApplication:CournotCournotequilibrium(tycompetition)2producers;identicalproducts.P(Q)a
Ci(Q)The2firms
(Q1,Q2)simultaneouslyand1(Q1,Q2)(aQ1Q2)Q12(Q1,Q2)(aQ1Q2)Q2Q1Q2
Given
aQ2QC QacQ1(Optimalresponse
同理QacQ2聯(lián)立可以得到Q*Q*a Theintersectionofthetwooptimalresponsecurvesgivesusthe Theequilibrium
**
(a9Benark Iftheyerscancooperate:(Pareto=max(a-c-Q
(a4cc(ac)2**(a
Qa-cQ*Q*2(a- Reason:firmidoesn’ttakeaccountoftheeffectof(negativeexternality)
Qionthe
j|pNotes:InCournotduopoly,thetwoproducers’strategiesarestrategicEquilibriumWhentherearemultipleequilibria,canwe/howdowepickone:Case1:Purecoordinationgame:Therearetwoequilibriainthisgame:(U,L)and(D,R).Therefinementmaydependonofficialrulesandinformalsocialnorms.Forexample,drivinginvolvescoordination.Itissafeifalldrivers
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年護理執(zhí)業(yè)資格考試《專業(yè)實務》試題庫(核心300題)
- 未來五年新形勢下工礦設施行業(yè)順勢崛起戰(zhàn)略制定與實施分析研究報告
- 四川省政府政務服務和公共資源交易服務中心及所屬事業(yè)單位2025年下半年公開選調工作人員參考題庫附答案
- 宜春市2025年度市直事業(yè)單位公開選調工作人員【22人】備考題庫附答案
- 招16人!城西公安分局2025年第一次公開招聘警務輔助人員備考題庫附答案
- 浙江國企招聘-2025杭州臨平環(huán)境科技有限公司公開招聘49人考試備考題庫附答案
- 陜西交控集團2026校園招聘備考題庫附答案
- 女裝面料介紹話術
- 2026年陜西省選調生招錄(面向重慶大學)備考題庫必考題
- 2025廣東汕頭海關緝私局招聘輔警21人參考題庫附答案
- 通信管道施工質量控制方案
- 仁愛科普版(2024)八年級上冊英語Unit1~Unit6單元話題作文練習題(含答案+范文)
- 不良資產合作戰(zhàn)略框架協(xié)議文本
- 先進班級介紹
- 2025年浙江省輔警考試真題及答案
- 2025中國熱帶農業(yè)科學院科技信息研究所第一批招聘4人備考題庫(第1號)附答案
- 雨課堂學堂在線學堂云《婚姻家庭法(武漢科大 )》單元測試考核答案
- 安徽寧馬投資有限責任公司2025年招聘派遣制工作人員考試筆試模擬試題及答案解析
- 2025版北師大版小學數(shù)學一年級上冊專項練習卷
- 2024-2025學年云南省昆明市五華區(qū)高一上學期期末質量監(jiān)測歷史試題(解析版)
- 酒店簽訂就餐協(xié)議合同
評論
0/150
提交評論