2022-2023學年山東臨沂市數(shù)學高一第二學期期末經典模擬試題含解析_第1頁
2022-2023學年山東臨沂市數(shù)學高一第二學期期末經典模擬試題含解析_第2頁
2022-2023學年山東臨沂市數(shù)學高一第二學期期末經典模擬試題含解析_第3頁
2022-2023學年山東臨沂市數(shù)學高一第二學期期末經典模擬試題含解析_第4頁
2022-2023學年山東臨沂市數(shù)學高一第二學期期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知不等式的解集為,則不等式的解集為()A. B.C. D.2.在等比數(shù)列中,若,則的值為()A. B. C. D.3.以下莖葉圖記錄了甲、乙兩組各五名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x,y的值分別為()A.2,5 B.5,5 C.5,8 D.8,84.設等差數(shù)列{an}的前n項和為Sn,a2+a4=6,則S5等于()A.10 B.12 C.15 D.305.已知函數(shù),若對于恒成立,則實數(shù)的取值范圍為()A. B. C. D.6.已知雙曲線的焦點與橢圓的焦點相同,則雙曲線的離心率為()A. B. C. D.27.一空間幾何體的三視圖如下圖所示,則該幾何體的體積為()A.1 B.3 C.6 D.28.如圖,在長方體中,M,N分別是棱BB1,B1C1的中點,若∠CMN=90°,則異面直線AD1和DM所成角為()A.30° B.45°C.60° D.90°9.要得到函數(shù)y=sin2x-πA.向左平行移動π3個單位 B.向右平行移動πC.向右平行移動π3個單位 D.向左平行移動π10.已知數(shù)列的前項和為,且,,則()A.127 B.129 C.255 D.257二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則____________________________.12.已知圓錐的表面積等于,其側面展開圖是一個半圓,則底面圓的半徑為__________.13.某海域中有一個小島(如圖所示),其周圍3.8海里內布滿暗礁(3.8海里及以外無暗礁),一大型漁船從該海域的處出發(fā)由西向東直線航行,在處望見小島位于北偏東75°,漁船繼續(xù)航行8海里到達處,此時望見小島位于北偏東60°,若漁船不改變航向繼續(xù)前進,試問漁船有沒有觸礁的危險?答:______.(填寫“有”、“無”、“無法判斷”三者之一)14.數(shù)列中,若,,則______;15.設變量x、y滿足約束條件,則目標函數(shù)的最大值為_______.16.命題“數(shù)列的前項和”成立的充要條件是________.(填一組符合題意的充要條件即可,所填答案中不得含有字母)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某大學要修建一個面積為的長方形景觀水池,并且在景觀水池四周要修建出寬為2m和3m的小路如圖所示問如何設計景觀水池的邊長,能使總占地面積最小?并求出總占地面積的最小值.18.已知圓以原點為圓心且與直線相切.(1)求圓的方程;(2)若直線與圓交于、兩點,過、兩點分別作直線的垂線交軸于、兩點,求線段的長.19.解關于的方程:20.為迎接世博會,要設計如圖的一張矩形廣告,該廣告含有大小相等的左中右三個矩形欄目,這三欄的面積之和為60000,四周空白的寬度為10cm,欄與欄之間的中縫空白的寬度為5cm,怎樣確定廣告矩形欄目高與寬的尺寸(單位:cm),能使整個矩形廣告面積最小.21.在中,分別是角的對邊.(1)求角的值;(2)若,且為銳角三角形,求的范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

首先根據(jù)題意得到,為方程的根,再解出的值帶入不等式即可.【詳解】有題知:,為方程的根.所以,解得.所以,解得:或.故選:B【點睛】本題主要考查二次不等式的求法,同時考查了學生的計算能力,屬于簡單題.2、B【解析】

根據(jù)等比數(shù)列的性質:若,則.【詳解】等比數(shù)列中,,,故選B.【點睛】本題考查等比數(shù)列的通項公式和性質,此題也可用通項公式求解.3、C【解析】試題分析:由題意得,,選C.考點:莖葉圖4、C【解析】因為等差數(shù)列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故選C.5、A【解析】

首先設,將題意轉化為,即可,再分類討論求出,解不等式組即可.【詳解】,恒成立,等價于,恒成立.令,對稱軸為.即等價于,即可.當時,得到,解得:.當時,得到,解得:.當時,得到,解得:.綜上所述:.故選:A【點睛】本題主要考查二次不等式的恒成立問題,同時考查了二次函數(shù)的最值問題,分類討論是解題的關鍵,屬于中檔題.6、B【解析】根據(jù)橢圓可以知焦點為,離心率,故選B.7、D【解析】

幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側棱與底面垂直,這條側棱長是2.【詳解】由三視圖可知,幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側棱與底面垂直,這條側棱長是2.四棱錐的體積是.故選D.【點睛】本題考查由三視圖求幾何體的體積,由三視圖求幾何體的體積,關鍵是由三視圖還原幾何體,同時還需掌握求體積的常用技巧如:割補法和等價轉化法.8、D【解析】

建立空間直角坐標系,結合,求出的坐標,利用向量夾角公式可求.【詳解】以為坐標原點,所在直線分別為軸,建立空間直角坐標系,如圖,設,則,,,因為,所以,即有.因為,所以,即異面直線和所成角為.故選:D.【點睛】本題主要考查異面直線所成角的求解,異面直線所成角主要利用幾何法和向量法,幾何法側重于把異面直線所成角平移到同一個三角形內,結合三角形知識求解;向量法側重于構建坐標系,利用向量夾角公式求解.9、B【解析】

把y=sin【詳解】由題得y=sin所以要得到函數(shù)y=sin2x-π3的圖象,只要將函數(shù)故選:B【點睛】本題主要考查三角函數(shù)的圖像變換,意在考查學生對該知識的理解掌握水平,屬于基礎題.10、C【解析】

利用迭代關系,得到另一等式,相減求出,判斷數(shù)列是否為等比數(shù)列,利用等比數(shù)列求和公式可得.【詳解】因為,,所以,相減得,,,又,所以,,所以數(shù)列是等比數(shù)列,所以,故選C.【點睛】本題考查等比數(shù)列的求和,數(shù)列通項公式的求法,考查計算求解能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

分子、分母同除以,將代入化簡即可.【詳解】因為,所以,故答案為.【點睛】本題主要考查同角三角函數(shù)之間的關系的應用,屬于基礎題.同角三角函數(shù)之間的關系包含平方關系與商的關系,平方關系是正弦與余弦值之間的轉換,商的關系是正余弦與正切之間的轉換.12、【解析】

設出底面圓的半徑,用半徑表示出圓錐的母線,再利用表面積,解出半徑。【詳解】設圓錐的底面圓的半徑為,母線為,則底面圓面積為,周長為,則解得故填2【點睛】本題考查根據(jù)圓錐的表面積求底面圓半徑,屬于基礎題。13、無【解析】

可過作的延長線的垂線,垂足為,結合角度關系可判斷為等腰三角形,再通過的邊角關系即可求解,判斷與3.8的大小關系即可【詳解】如圖,過作的延長線的垂線,垂足為,在中,,,則,所以為等腰三角形。,又,所以,,所以漁船沒有觸礁的危險故答案為:無【點睛】本題考查三角函數(shù)在生活中的實際應用,屬于基礎題14、【解析】

先分組求和得,再根據(jù)極限定義得結果.【詳解】因為,,……,,所以則.【點睛】本題考查分組求和法、等比數(shù)列求和、以及數(shù)列極限,考查基本求解能力.15、3【解析】

可通過限定條件作出對應的平面區(qū)域圖,再根據(jù)目標函數(shù)特點進行求值【詳解】可行域如圖所示;則可化為,由圖象可知,當過點時,有最大值,則其最大值為:故答案為:3.【點睛】線性規(guī)劃問題關鍵是能正確畫出可行域,目標函數(shù)可由幾何意義確定具體含義(最值或斜率)16、數(shù)列為等差數(shù)列且,.【解析】

根據(jù)題意,設該數(shù)列為,由數(shù)列的前項和公式分析可得數(shù)列為等差數(shù)列且,,反之驗證可得成立,綜合即可得答案.【詳解】根據(jù)題意,設該數(shù)列為,若數(shù)列的前項和,則當時,,當時,,當時,符合,故有數(shù)列為等差數(shù)列且,,反之當數(shù)列為等差數(shù)列且,時,,;故數(shù)列的前項和”成立的充要條件是數(shù)列為等差數(shù)列且,,故答案為:數(shù)列為等差數(shù)列且,.【點睛】本題考查充分必要條件的判定,關鍵是掌握充分必要條件的定義,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、水池一邊長為12m,另一邊為18m,總面積為最小,為.【解析】

設水池一邊長為xm,則另一邊為,表示出面積利用基本不等式求解即可.【詳解】設水池一邊長為xm,則另一邊為,總面積,當且僅當時取等號,故水池一邊長為12m,則另一邊為18m,總面積為最小,為,【點睛】本題考查函數(shù)在實際問題中的應用,基本不等式的應用,考查計算能力.18、(1);(2).【解析】

(1)計算原點到直線的距離,作為圓的半徑,從而可得出圓的方程;(2)計算出圓心到直線的距離,利用勾股定理可計算出,過點作,垂足為,求出直線的傾斜角為,再利用銳角三角函數(shù)的定義可求出.【詳解】(1)把直線化為一般式,即,到直線的距離為,圓的半徑為,圓的方程為;(2)直線的一般方程為,點到直線的距離為,圓的半徑為,則,過點作,垂足為,.又的傾斜角為,,.因此,線段的長為.【點睛】本題考查圓的方程的求解,同時也考查了直線截圓所得弦長的計算,涉及了銳角三角函數(shù)的定義的應用,考查計算能力,屬于中等題.19、【解析】

根據(jù)方程解出或,利用三角函數(shù)的定義解出,再根據(jù)終邊相同角的表示即可求出.【詳解】由,得,所以或,所以或,所以的解集為:.【點睛】本題考查了三角方程的解法,終邊相同角的表示,反三角函數(shù)的定義,考查計算能力,屬于基礎題.20、高200,寬100【解析】

設廣告矩形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論