2022-2023學(xué)年江西省贛州市會昌中學(xué)、寧師中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第1頁
2022-2023學(xué)年江西省贛州市會昌中學(xué)、寧師中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁
2022-2023學(xué)年江西省贛州市會昌中學(xué)、寧師中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁
2022-2023學(xué)年江西省贛州市會昌中學(xué)、寧師中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁
2022-2023學(xué)年江西省贛州市會昌中學(xué)、寧師中學(xué)高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,長方體中,,,那么異面直線與所成角的余弦值是()A. B. C. D.2.已知點,點是圓上任意一點,則面積的最大值是()A. B. C. D.3.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為()A.-12 B.-14 C.10 D.84.在等比數(shù)列中,成等差數(shù)列,則公比等于()A.1

2 B.?1

?2 C.1

?2 D.?1

25.已知是第三象限的角,若,則A. B. C. D.6.已知數(shù)列的通項公式為,則72是這個數(shù)列的()A.第7項 B.第8項 C.第9項 D.第10項7.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.18.如果存在實數(shù),使成立,那么實數(shù)的取值范圍是()A. B.或C.或 D.或9.若實數(shù)x,y滿足x2y2A.4,8 B.8,+10.下列函數(shù)中,最小正周期為的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某公司調(diào)查了商品的廣告投入費用(萬元)與銷售利潤(萬元)的統(tǒng)計數(shù)據(jù),如下表:廣告費用(萬元)銷售利潤(萬元)由表中的數(shù)據(jù)得線性回歸方程為,則當(dāng)時,銷售利潤的估值為___.(其中:)12.函數(shù)的最大值是__________.13.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為200,400,300,100件,為檢驗產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗,則應(yīng)從丙種型號的產(chǎn)品中抽取________件.14.已知,,則______.15.實數(shù)x、y滿足,則的最大值為________.16.在中,角所對的邊為,若,且的外接圓半徑為,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓.(1)過原點的直線被圓所截得的弦長為2,求直線的方程;(2)過外的一點向圓引切線,為切點,為坐標(biāo)原點,若,求使最短時的點坐標(biāo).18.已知向量與向量的夾角為,且,.(1)求;(2)若,求.19.東莞市攝影協(xié)會準(zhǔn)備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢人”攝影圖片展.通過平常人的鏡頭記錄國強民富的幸福生活,向祖國母親的生日獻(xiàn)禮,攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:(1)求頻率分布直方圖中的值,并根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應(yīng)作者參加“講述照片背后的故事”座談會.①在答題卡上的統(tǒng)計表中填出每組相應(yīng)抽取的人數(shù):年齡人數(shù)②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人至少有一人的年齡在的概率.20.如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.21.如圖,在四棱錐中,平面,底面是菱形,連,交于點.(Ⅰ)若點是側(cè)棱的中點,連,求證:平面;(Ⅱ)求證:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

可證得四邊形為平行四邊形,得到,將所求的異面直線所成角轉(zhuǎn)化為;假設(shè),根據(jù)角度關(guān)系可求得的三邊長,利用余弦定理可求得余弦值.【詳解】連接,四邊形為平行四邊形異面直線與所成角即為與所成角,即設(shè),,,,在中,由余弦定理得:異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解問題,關(guān)鍵是能夠通過平行關(guān)系將問題轉(zhuǎn)化為相交直線所成角,在三角形中利用余弦定理求得余弦值.2、B【解析】

求出直線的方程,計算出圓心到直線的距離,可知的最大高度為,并計算出,最后利用三角形的面積公式可得出結(jié)果.【詳解】直線的方程,且,圓的圓心坐標(biāo)為,半徑長為,圓心到直線的距離為,所以,點到直線的距離的最大值為,因此,面積的最大值為,故選B.【點睛】本題考查三角形面積的最值問題,考查圓的幾何性質(zhì),當(dāng)直線與圓相離時,若圓的半徑為,圓心到直線的距離為,則圓上一點到直線距離的最大值為,距離的最小值為,要熟悉相關(guān)結(jié)論的應(yīng)用.3、A【解析】

由直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【詳解】∵直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,垂足為(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案為:A【點睛】本題考查實數(shù)值的求法,考查直線與直線垂直的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.4、C【解析】

設(shè)出基本量,利用等比數(shù)列的通項公式,再利用等差數(shù)列的中項關(guān)系,即可列出相應(yīng)方程求解【詳解】等比數(shù)列中,設(shè)首項為,公比為,成等差數(shù)列,,即,或答案選C【點睛】本題考查等差數(shù)列和等比數(shù)列求基本量的問題,屬于基礎(chǔ)題5、D【解析】

根據(jù)是第三象限的角得,利用同角三角函數(shù)的基本關(guān)系,求得的值.【詳解】因為是第三象限的角,所以,因為,所以解得:,故選D.【點睛】本題考查余弦函數(shù)在第三象限的符號及同角三角函數(shù)的基本關(guān)系,即已知值,求的值.6、B【解析】

根據(jù)數(shù)列的通項公式,令,求得的值,即可得到答案.【詳解】由題意,數(shù)列的通項公式為,令,即,解得或(不合題意),所以是數(shù)列的第8項,故選B.【點睛】本題主要考查了數(shù)列的通項公式的應(yīng)用,著重考查了運算與求解能力,屬于基礎(chǔ)題.7、B【解析】

將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.8、A【解析】

根據(jù),可得,再根據(jù)基本不等式取等的條件可得答案.【詳解】因為,所以,即,即,又(當(dāng)且僅當(dāng)時等號成立)所以,所以.故選:A【點睛】本題考查了余弦函數(shù)的值域,考查了基本不等式取等的條件,屬于中檔題.9、A【解析】

利用基本不等式得x2y2【詳解】∵x2y2≤(x2+y2)24∴x2故選A.【點睛】本題考查基本不等式求最值問題,解題關(guān)鍵是掌握基本不等式的變形應(yīng)用:ab≤(a+b)10、D【解析】

由函數(shù)的最小正周期為,逐個選項運算即可得解.【詳解】解:對于選項A,的最小正周期為,對于選項B,的最小正周期為,對于選項C,的最小正周期為,對于選項D,的最小正周期為,故選D.【點睛】本題考查了三角函數(shù)的最小正周期,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、12.2【解析】

先求出,的平均數(shù),再由題中所給公式計算出和,進(jìn)而得出線性回歸方程,將代入,即可求出結(jié)果.【詳解】由題中數(shù)據(jù)可得:,,所以,所以,故回歸直線方程為,所以當(dāng)時,【點睛】本題主要考查線性回歸方程,需要考生掌握住最小二乘法求與,屬于基礎(chǔ)題型.12、【解析】分析:利用兩角和正弦公式簡化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.13、1【解析】應(yīng)從丙種型號的產(chǎn)品中抽取件,故答案為1.點睛:在分層抽樣的過程中,為了保證每個個體被抽到的可能性是相同的,這就要求各層所抽取的個體數(shù)與該層所包含的個體數(shù)之比等于樣本容量與總體的個體數(shù)之比,即ni∶Ni=n∶N.14、【解析】

直接利用二倍角公式,即可得到本題答案.【詳解】因為,所以,得,由,所以.故答案為:【點睛】本題主要考查利用二倍角公式求值,屬基礎(chǔ)題.15、【解析】

根據(jù)約束條件,畫出可行域,將目標(biāo)函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【詳解】由約束條件,畫出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點時,直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【點睛】本題考查線性規(guī)劃求最大值,屬于簡單題.16、或.【解析】

利用正弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由正弦定理可得,所以,,,或,故答案為或.【點睛】本題考查正弦定理的應(yīng)用,在利用正弦值求角時,除了找出銳角還要注意相應(yīng)的補角是否滿足題意,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)【解析】

(1)利用垂徑定理求出圓心到直線的距離,再分過原點的直線的斜率不存在與存在兩種情況,分別根據(jù)點到線的距離公式求解即可.(2)設(shè),再根據(jù)圓的切線長公式以及求出關(guān)于關(guān)于的關(guān)系,再代入的表達(dá)式求取得最小值時的即可.【詳解】(1)圓圓心為,半徑為.當(dāng)直線的斜率不存在時,圓心到直線的距離,故不存在.當(dāng)直線的斜率存在時,設(shè)的方程:,即.則圓心到的距離,由垂徑定理得,即,即,解得.故的方程為或(2)如圖,設(shè),因為,故,則,即,化簡得,即.此時,故當(dāng),即時最短.此時【點睛】本題主要考查了直線與圓的位置關(guān)系,包括垂徑定理以及設(shè)點根據(jù)距離公式求距離最值的問題.需要根據(jù)題意列出關(guān)系式化簡,并用二次函數(shù)在對稱軸處取最值的方法.屬于中檔題.18、(1);(2).【解析】

(1)對等式兩邊同時平方,利用平面向量數(shù)量積的定義以及數(shù)量積的運算性質(zhì),可以求出;(2)根據(jù)兩個非零向量互相垂直等價于它們的數(shù)量積為零,可以得到方程,解方程可以求出的值.【詳解】解:(1)由得,那么;解得或(舍去)∴;(2)由得,那么因此∴.【點睛】本題考查了求平面向量模的問題,考查了兩個非零平面向量互相垂直的性質(zhì),考查了平面向量數(shù)量積的定義及運算性質(zhì),考查了數(shù)學(xué)運算性質(zhì).19、(1),平均數(shù)為,中位數(shù)為(2)①見解析②【解析】

(1)由頻率分布直方圖各個小矩形的面積之和為1可得,用區(qū)間中點值代替可計算均值,中位數(shù)把頻率分布直方圖中小矩形面積等分.(2)①分層抽樣,是按比例抽取人數(shù);②年齡在有2人,在有4人,設(shè)在的是,,在的是,可用列舉法列舉出選2人的所有可能,然后可計算出概率.【詳解】(1)由頻率分布直方圖各個小矩形的面積之和為1,得在頻率分布直方圖中,這100位參賽者年齡的樣本平均數(shù)為:設(shè)中位數(shù)為,由,解得.(2)①每組應(yīng)各抽取人數(shù)如下表:年齡人數(shù)12485②根據(jù)分層抽樣的原理,年齡在有2人,在有4人,設(shè)在的是,,在的是,列舉選出2人的所有可能如下:,共15種情況.設(shè)“這2人至少有一人的年齡在區(qū)間”為事件,則包含:共9種情況則【點睛】本題考查頻率分布直方圖,考查樣本數(shù)據(jù)特征、古典概型,屬于基礎(chǔ)題型.20、(1)見證明;(2)【解析】

(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.21、(Ⅰ)見證明;(Ⅱ)見證明【解析】

(Ⅰ)由為菱形,得為中點,進(jìn)而得到,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論