版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
基于外源性知識輔助的自動問答技術(shù)研究基于外源性知識輔助的自動問答技術(shù)研究
摘要:自動問答技術(shù)是人工智能領(lǐng)域的一個熱門研究方向,其目標是構(gòu)建一個智能問答系統(tǒng),通過自然語言實現(xiàn)人機對話。本文針對當前自動問答系統(tǒng)存在的問題,提出了基于外源性知識輔助的自動問答技術(shù)研究方案。該方案通過引入外源性知識,增強自動問答系統(tǒng)的知識儲備,提升答案準確率和覆蓋率。具體來說,本文研究了知識表示方法、知識抽取技術(shù)、知識融合方法等關(guān)鍵技術(shù),以及如何將這些技術(shù)應(yīng)用于實際的自動問答系統(tǒng)中。
本文首先介紹了自動問答技術(shù)的發(fā)展歷程和研究現(xiàn)狀,指出現(xiàn)有自動問答系統(tǒng)在面對復雜多變的實際應(yīng)用場景時,普遍存在著知識不充分、答案不準確、覆蓋率低等問題。接著,本文詳細介紹了外源性知識的概念和類型,包括通用知識庫、領(lǐng)域?qū)I(yè)知識庫和社交媒體等,為后續(xù)的研究做出了鋪墊。
在所引入的外源性知識的基礎(chǔ)上,本文分別研究了知識表示、知識抽取和知識融合等核心技術(shù)。其中,知識表示研究了二元組、三元組、本體等多種表示方法,并對其進行了比較和評價,得出了使用本體表示知識最為合適的結(jié)論。知識抽取則研究了基于規(guī)則、基于分類、基于聚類等多種抽取技術(shù),并提出了一種基于深度學習的知識抽取方法,取得了比較好的效果。知識融合方面,本文提出了一種基于置信度的知識融合方法,通過計算各個知識來源的置信度,動態(tài)調(diào)節(jié)各個知識片段對總答案的貢獻比例,提高答案的準確率和覆蓋率。
最后,本文以某汽車網(wǎng)站的自動問答系統(tǒng)為例,驗證了所提出的基于外源性知識輔助的自動問答技術(shù)研究方案的有效性和實用性。實驗結(jié)果表明,引入外源性知識后,該系統(tǒng)的答案準確率從81.5%提升到了92.8%,覆蓋率也有了顯著提升。因此,本文的研究成果對于提升當前自動問答系統(tǒng)的能力具有重要的實際應(yīng)用價值。
關(guān)鍵詞:自動問答技術(shù);外源性知識;知識表示;知識抽?。恢R融Abstract:
Asanimportantbranchofnaturallanguageprocessing,automaticquestionansweringtechnologyhasbeenwidelystudiedandapplied.However,theaccuracyandcoverageofthecurrentautomaticquestionansweringsystemstillneedtobeimproved.Inordertosolvethisproblem,thispaperproposesaresearchschemeofautomaticquestionansweringtechnologybasedonexternalknowledge,whichintroducesexternalknowledgeintotheautomaticquestionansweringsystemtoenhanceitsabilitytoanswerquestionsaccuratelyandcomprehensively.
Firstly,thispaperanalyzestheexistingproblemsintheautomaticquestionansweringsystem,suchaslowaccuracy,inaccurateanswers,andlowcoverage.Then,theconceptandtypesofexternalknowledgeareintroduced,includinggeneralknowledgebases,domain-specificknowledgebases,andsocialmedia,layingafoundationforsubsequentresearch.
Basedontheintroducedexternalknowledge,thispaperstudiesthecoretechnologiesofknowledgerepresentation,knowledgeextraction,andknowledgefusion.Amongthem,knowledgerepresentationstudiesmultiplerepresentationmethodssuchasbinarytuples,ternarytuples,andontologies,andcomparesandevaluatesthemtoconcludethatontologyisthemostsuitablemethodforrepresentingknowledge.Knowledgeextractionstudiesmultipleextractiontechnologiessuchasrule-based,classification-based,andclustering-basedmethods,andproposesadeeplearning-basedknowledgeextractionmethod,whichachievedgoodresults.Intermsofknowledgefusion,thispaperproposesaconfidence-basedknowledgefusionmethod,whichdynamicallyadjuststhecontributionofeachknowledgefragmenttotheoverallanswerbycalculatingtheconfidenceofeachknowledgesource,therebyimprovingtheaccuracyandcoverageoftheanswer.
Finally,thispaperverifiestheeffectivenessandpracticalityoftheproposedresearchschemeofautomaticquestionansweringtechnologybasedonexternalknowledge,usingaself-developedautomaticquestionansweringsystemofacarwebsiteasanexample.Experimentalresultsshowthatafterintroducingexternalknowledge,theaccuracyofthesystem'sanswershasincreasedfrom81.5%to92.8%,andthecoveragehasalsosignificantlyincreased.Therefore,theresearchresultsofthispaperhaveimportantpracticalapplicationvalueinimprovingthecurrentautomaticquestionansweringsystem.
Keywords:automaticquestionansweringtechnology;externalknowledge;knowledgerepresentation;knowledgeextraction;knowledgefusionInadditiontoimprovingtheaccuracyandcoverageofautomaticquestionansweringsystemsthroughtheintroductionofexternalknowledge,researchinthisfieldhasalsoexploredvariousothermethodsandtechniques.
Oneapproachistoincorporatetheuseofnaturallanguageprocessing(NLP)techniques.NLPisasubfieldofartificialintelligencethatfocusesonthedevelopmentofalgorithmsandmodelsthatallowcomputerstounderstandandgeneratehumanlanguage.ByapplyingNLPtechniques,automaticquestionansweringsystemscanimprovetheirabilitytointerpretandrespondtonaturallanguagequeries.
Anotherapproachistoutilizemachinelearningalgorithms.Machinelearningisabranchofartificialintelligencethatfocusesonthedevelopmentofalgorithmsthatallowcomputerstolearnfromdata,withoutbeingexplicitlyprogrammed.Throughtheuseofmachinelearningalgorithms,automaticquestionansweringsystemscanimprovetheirabilitytorecognizepatternsindata,andgeneratemoreaccurateandrelevantanswerstouserqueries.
Furthermore,researchinthisfieldhasalsoexploredtheuseofknowledgegraphs,whicharelargenetworksofinterconnecteddatathatrepresentknowledgeaboutaparticulardomain.Byusingknowledgegraphs,automaticquestionansweringsystemscanaccessvastamountsofstructureddata,whichcanbeusedtogeneratemoreaccurateandrelevantanswerstouserqueries.
Inconclusion,automaticquestionansweringtechnologyhasmadesignificantadvancesoverthepastfewdecades,drivenbytheuseofexternalknowledge,naturallanguageprocessing,machinelearning,andknowledgegraphs.Theseadvanceshaveledtosignificantimprovementsintheaccuracyandcoverageofautomaticquestionansweringsystems,andhaveimportantpracticalapplicationvalueinawiderangeoffields,includingeducation,healthcare,finance,andmore.Itisexpectedthatfurtherresearchinthisfieldwillcontinuetopushtheboundariesofwhatispossible,andleadtoevenmoreadvancedandpowerfulautomaticquestionansweringsystemsinthefutureOneareawhereautomaticquestionansweringsystemshaveshowngreatpotentialisinthefieldofeducation.Withtheincreasingpopularityofonlinelearningande-learningplatforms,thereisagrowingneedforsystemsthatcanprovideaccurateandtimelyanswerstostudents'questions.Thisisparticularlyimportantinsubjectssuchasscienceandmath,wherestudentsmaystruggletounderstandcomplexconceptswithouttheguidanceofaknowledgeableinstructor.
Automaticquestionansweringsystemscanhelpbridgethisgapbyprovidingstudentswithinstantaccesstoreliableandaccurateinformation,allowingthemtoquicklyandeasilyunderstandkeyconceptsandovercomelearningbarriers.Thiscanbeespeciallyusefulinsituationswherestudentsmaynothaveaccesstoateacherortutor,suchasinremoteareasorforstudentswhoarestudyingindependently.
Inthehealthcareindustry,automaticquestionansweringsystemscanhelpmedicalprofessionalsquicklyandaccuratelydiagnoseandtreatpatients.Forexample,asystemthatisabletoautomaticallyanswerquestionsaboutsymptomsanddiagnosescansavevaluabletimefordoctorsandnurses,allowingthemtofocusonprovidingthebestpossiblecarefortheirpatients.
Inthefinancialindustry,automaticquestionansweringsystemscanhelpfinancialadvisorsandbrokersprovidebetteradvicetotheirclients.Byanalyzingvastamountsoffinancialdataandprovidingtimelyanswerstocomplexfinancialquestions,thesesystemscanhelpinvestorsmakebetterdecisionsandmaximizetheirreturns.Theycanalsohelpreducetheriskoffinancialfraudandothertypesoffinancialcrime,whichisagrowingconcernformanyfinancialinstitutions.
Overall,automaticquestionansweringsystemshavethepotentialtorevolutionizeawiderangeofindustriesandfields,providingfaster,m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年臺州職業(yè)技術(shù)學院單招職業(yè)技能考試模擬試題帶答案解析
- 2026年電工考試理論試題及答案(名校卷)
- 2026年湖南司法警官職業(yè)學院單招職業(yè)技能測試題庫附答案
- 2026年建筑電工知識試題及一套完整答案
- 2026年外企心理考試題庫及完整答案一套
- 2026年安徽水利水電職業(yè)技術(shù)學院單招職業(yè)技能考試題庫附答案
- 2026年山東省煙臺市單招職業(yè)適應(yīng)性測試模擬測試卷附答案
- 2025廣東廣州市荔灣區(qū)彩虹街消毒站招聘消毒員2人考試參考題庫附答案
- 2026年浙江北師大臺州實驗學校代課老師招聘2人筆試備考題庫及答案解析
- 2025廣東廣州市白云區(qū)石井中心幼兒園招聘2人考試歷年真題匯編附答案
- 2023-2024學年北京市海淀區(qū)清華附中八年級(上)期末數(shù)學試卷(含解析)
- 臨終決策中的醫(yī)患共同決策模式
- 2026年包頭輕工職業(yè)技術(shù)學院高職單招職業(yè)適應(yīng)性測試備考題庫及答案詳解
- 草原補償協(xié)議書
- 呼吸內(nèi)科進修匯報課件
- 康復治療進修匯報
- 牽引供電系統(tǒng)短路計算-三相對稱短路計算(高鐵牽引供電系統(tǒng))
- 離婚協(xié)議書模板(模板)(通用)
- (完整版)第一性原理
- 降低住院患者口服藥缺陷率教學課件
- 《質(zhì)量管理與控制技術(shù)基礎(chǔ)》第一章 質(zhì)量管理基礎(chǔ)知識
評論
0/150
提交評論