版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為().A. B.2 C. D.2.若,,則與向量同向的單位向量是()A. B. C. D.3.已知,,,,則下列等式一定成立的是()A. B. C. D.4.已知是定義在上的奇函數(shù),且當時,,那么()A. B. C. D.5.用數(shù)學(xué)歸納法證明的過程中,設(shè),從遞推到時,不等式左邊為()A. B.C. D.6.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.7.設(shè)等比數(shù)列的前項和為,且,則()A. B. C. D.8.已知函數(shù),且此函數(shù)的圖象如圖所示,由點的坐標是()A. B. C. D.9.設(shè)x,y滿足約束條件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目標函數(shù)z=abx+y(a,A.2 B.4 C.6 D.810.已知數(shù)列是公差不為零的等差數(shù)列,是等比數(shù)列,,,則下列說法正確的是()A. B.C. D.與的大小不確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列{an}的前n項和為Sn,若S3=7,S6=63,則an=_____12.如圖,在直四棱柱中,,,,分別為的中點,平面平面.給出以下幾個說法:①;②直線與的夾角為;③與平面所成的角為;④平面內(nèi)存在直線與平行.其中正確命題的序號是__________.13.已知,,若,則實數(shù)________.14.若正四棱錐的側(cè)棱長為,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是________.15.觀察下列等式:(1);(2);(3);(4),……請你根據(jù)給定等式的共同特征,并接著寫出一個具有這個共同特征的等式(要求與已知等式不重復(fù)),這個等式可以是__________________.(答案不唯一)16.已知函數(shù),對于下列說法:①要得到的圖象,只需將的圖象向左平移個單位長度即可;②的圖象關(guān)于直線對稱:③在內(nèi)的單調(diào)遞減區(qū)間為;④為奇函數(shù).則上述說法正確的是________(填入所有正確說法的序號).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合,數(shù)列是公比為的等比數(shù)列,且等比數(shù)列的前三項滿足.(1)求通項公式;(2)若是等比數(shù)列的前項和,記,試用等比數(shù)列求和公式化簡(用含的式子表示)18.如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊(、、按順時針方向排列)(1)若等邊邊長為,,試寫出關(guān)于的函數(shù)關(guān)系;(2)問為多少時,四邊形的面積最大?這個最大面積為多少?19.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大?。唬?)設(shè),,的最大值為5,求k的值.20.某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).(1)求樓房每平方米的平均綜合費用f(x)的解析式.(2)為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費用最小值是多少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)21.在中,,,,解三角形.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
利用三角形面積公式列出關(guān)系式,把,已知面積代入求出的長,再利用余弦定理即可求出的長.【詳解】∵在中,,且的面積為,
∴,
解得:,
由余弦定理得:,
則.
故選D.【點睛】此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.2、A【解析】
先求出的坐標,然后即可算出【詳解】因為,所以所以與向量同向的單位向量是故選:A【點睛】本題考查的是向量的坐標運算,屬于基礎(chǔ)題3、B【解析】試題分析:相除得,又,所以.選B.【考點定位】指數(shù)運算與對數(shù)運算.4、C【解析】試題分析:由題意得,,故,故選C.考點:分段函數(shù)的應(yīng)用.5、C【解析】
比較與時不等式左邊的項,即可得到結(jié)果【詳解】因此不等式左邊為,選C.【點睛】本題考查數(shù)學(xué)歸納法,考查基本分析判斷能力,屬基礎(chǔ)題6、D【解析】
由,,,得解.【詳解】解:因為,,,所以,故選:D.【點睛】本題考查了指數(shù)冪,對數(shù)值的大小關(guān)系,屬基礎(chǔ)題.7、C【解析】
由,,聯(lián)立方程組,求出等比數(shù)列的首項和公比,然后求.【詳解】解:若,則,顯然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故選:C.【點睛】本題主要考查等比數(shù)列的前項和公式的應(yīng)用,要求熟練掌握,特別要注意對公比是否等于1要進行討論,屬于基礎(chǔ)題.8、B【解析】
先由函數(shù)圖象與軸的相鄰兩個交點確定該函數(shù)的最小正周期,并利用周期公式求出的值,再將點代入函數(shù)解析式,并結(jié)合函數(shù)在該點附近的單調(diào)性求出的值,即可得出答案?!驹斀狻拷猓河蓤D象可得函數(shù)的周期∴,得,將代入可得,∴(注意此點位于函數(shù)減區(qū)間上)∴由可得,∴點的坐標是,故選:B.【點睛】本題考查利用圖象求三角函數(shù)的解析式,其步驟如下:①求、:,;②求:利用一些關(guān)鍵點求出最小正周期,再由公式求出;③求:代入關(guān)鍵點求出初相,如果代對稱中心點要注意附近的單調(diào)性。9、B【解析】
畫出不等式組對應(yīng)的平面區(qū)域,平移動直線至1,4時z有最大值8,再利用基本不等式可求a+b的最小值.【詳解】原不等式組表示的平面區(qū)域如圖中陰影部分所示,當直線z=abx+y(a,b>0)過直線2x-y+2=0與直線8x-y-4=0的交點1,4時,目標函數(shù)z=abx+y(a,即ab=4,所以a+b≥2ab=4,當且僅當a=b=2時,等號成立.所以【點睛】二元一次不等式組的條件下的二元函數(shù)的最值問題,常通過線性規(guī)劃來求最值,求最值時往往要考二元函數(shù)的幾何意義,比如3x+4y表示動直線3x+4y-z=0的橫截距的三倍,而y+2x-1則表示動點Px,y與10、A【解析】
設(shè)等比數(shù)列的公比為,結(jié)合題中條件得出且,將、、、用與表示,利用因式分解思想以及基本不等式可得出與的不等關(guān)系,并結(jié)合等差數(shù)列下標和性質(zhì)可得出與的大小關(guān)系.【詳解】設(shè)等比數(shù)列的公比為,由于等差數(shù)列是公差不為零,則,從而,且,得,,,即,另一方面,由等差數(shù)列的性質(zhì)可得,因此,,故選:A.【點睛】本題考查等差數(shù)列和等比數(shù)列性質(zhì)的應(yīng)用,解題的關(guān)鍵在于將等比中的項利用首項和公比表示,并進行因式分解,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等比數(shù)列的前n項和公式列出方程組,求出首項與公比,由此能求出該數(shù)列的通項公式.【詳解】由題意,,不合題意舍去;當?shù)缺葦?shù)列的前n項和為,即,解得,所以,故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.12、①③.【解析】
利用線面平行的性質(zhì)定理可判斷①;利用平行線的性質(zhì)可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據(jù)直線與平面的位置關(guān)系可判斷④;【詳解】對于①,由,平面平面,則,又,所以,故①正確;對于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對于③,與平面所成的角即為與平面所成的角,根據(jù)三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對于④,由于與平面相交,故平面內(nèi)不存在與平行的直線.故答案為:①③【點睛】本題是一道立體幾何題目,考查了線面平行的性質(zhì)定理,求線面角以及直線與平面之間的位置關(guān)系,屬于中檔題.13、2或【解析】
根據(jù)向量平行的充要條件代入即可得解.【詳解】由有:,解得或.故答案為:2或.【點睛】本題考查了向量平行的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),設(shè)正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【詳解】過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),則為側(cè)面與底面所成角的平面角,即,設(shè)正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【點睛】本題主要考查空間線面角的計算,考查棱錐體積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.15、【解析】
觀察式子特點可知,分子上兩余弦的角的和是,分母上兩個正弦的角的和是,據(jù)此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結(jié)出一般規(guī)律:,可賦值,得故答案為:【點睛】本題考查歸納推理能力,能找出余角關(guān)系和補角關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題16、②④【解析】
結(jié)合三角函數(shù)的圖象與性質(zhì)對四個結(jié)論逐個分析即可得出答案.【詳解】①要得到的圖象,應(yīng)將的圖象向左平移個單位長度,所以①錯誤;②令,,解得,,所以直線是的一條對稱軸,故②正確;③令,,解得,,因為,所以在定義域內(nèi)的單調(diào)遞減區(qū)間為和,所以③錯誤;④是奇函數(shù),所以該說法正確.【點睛】本題考查了正弦型函數(shù)的對稱軸、單調(diào)性、奇偶性與平移變換,考查了學(xué)生對的圖象與性質(zhì)的掌握,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)觀察式子特點可知,只有2,4,8三項符合等比數(shù)列特征,再根據(jù)題設(shè)條件求解即可;(2)根據(jù)等比數(shù)列通項公式表示出,再采用分組求和法化簡的表達式即可【詳解】(1)由題可知,只有2,4,8三項符合等比數(shù)列特征,又,故,故,;(2),,所以【點睛】本題考查等比數(shù)列通項公式的求法,等比數(shù)列前項和公式的用法,分組求和法的應(yīng)用,屬于中檔題18、(1);(2)θ=時,四邊形OACB的面積最大,其最大面積為.【解析】
(1)根據(jù)余弦定理可求得(2)先表示出△ABC的面積及△OAB的面積,進而表示出四邊形OACB的面積,并化簡函數(shù)的解析式為正弦型函數(shù)的形式,再結(jié)合正弦型函數(shù)最值的求法進行求解.【詳解】(1)由余弦定理得則(2)四邊形OACB的面積=△OAB的面積+△ABC的面積則△ABC的面積△OAB的面積?OA?OB?sinθ?2?4?sinθ=4sinθ四邊形OACB的面積4sinθ=sin(θ﹣)∴當θ﹣=,即θ=時,四邊形OACB的面積最大,其最大面積為.【點睛】本題考查利用正余弦定理求解面積最值,其中準確列出面積表達式是關(guān)鍵,考查化簡求值能力,是中檔題19、(1),(2)【解析】
解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當時,的最大值為.………(10分)………(12分)20、(1);(2)該樓房應(yīng)建為20層,每平方米的平均綜合費用最小值為5000元.【解析】【試題分析】先建立樓房每平方米的平均綜合費用函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 律師培訓(xùn)管理制度
- 供熱學(xué)習(xí)培訓(xùn)管理制度
- 加油站危廢培訓(xùn)制度
- 2025重慶兩江新區(qū)人才發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解(3卷)
- 培訓(xùn)機構(gòu)服務(wù)管理制度
- 2025貴州遵義規(guī)劃勘測設(shè)計集團有限公司招聘工作人員筆試筆試歷年參考題庫附帶答案詳解
- 2025貴州納雍縣志宏就業(yè)扶貧勞務(wù)有限公司招聘10人筆試歷年參考題庫附帶答案詳解
- 2025貴州畢節(jié)市融資擔保集團有限公司及下屬子公司招聘12名工作人員及第二次人員筆試歷年參考題庫附帶答案詳解
- 2025福建莆田市數(shù)字集團有限公司招聘企業(yè)員工總及擬人員筆試歷年參考題庫附帶答案詳解
- 2025福建省龍巖高速公路有限公司招聘1人筆試歷年參考題庫附帶答案詳解
- 《關(guān)鍵軟硬件自主可控產(chǎn)品名錄》
- 2025年濟南市九年級中考語文試題卷附答案解析
- 信息安全風(fēng)險評估及應(yīng)對措施
- 紅藍黃光治療皮膚病臨床應(yīng)用專家共識(2025版)解讀
- 錄音棚項目可行性研究報告
- 園藝苗木種植管理技術(shù)培訓(xùn)教材
- 美國AHA ACC高血壓管理指南(2025年)修訂要點解讀課件
- (標準)警局賠償協(xié)議書
- GB/T 20921-2025機器狀態(tài)監(jiān)測與診斷詞匯
- 人教版英語九年級全一冊單詞表
- 護工培訓(xùn)課件內(nèi)容
評論
0/150
提交評論