2023年福建省寧德寧市-同心順-六校聯(lián)盟數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第1頁
2023年福建省寧德寧市-同心順-六校聯(lián)盟數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第2頁
2023年福建省寧德寧市-同心順-六校聯(lián)盟數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第3頁
2023年福建省寧德寧市-同心順-六校聯(lián)盟數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第4頁
2023年福建省寧德寧市-同心順-六校聯(lián)盟數(shù)學(xué)高一第二學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,若,則()A. B. C. D.2.從裝有兩個(gè)紅球和三個(gè)黑球的口袋里任取兩個(gè)球,那么互斥而不對立的兩個(gè)事件是()A.“至少有一個(gè)黑球”與“都是黑球” B.“至少有一個(gè)黑球”與“至少有一個(gè)紅球”C.“恰好有一個(gè)黑球”與“恰好有兩個(gè)黑球” D.“至少有一個(gè)黑球”與“都是紅球”3.設(shè)函數(shù)的圖象分別向左平移m(m>0)個(gè)單位,向右平移n(n>0>個(gè)單位,所得到的兩個(gè)圖象都與函數(shù)的圖象重合的最小值為()A. B. C. D.4.長方體共頂點(diǎn)的三個(gè)相鄰面面積分別為,這個(gè)長方體的頂點(diǎn)在同一個(gè)球面上,則這個(gè)球的表面積為()A. B. C. D.5.為等差數(shù)列的前項(xiàng)和,且,.記,其中表示不超過的最大整數(shù),如,.?dāng)?shù)列的前項(xiàng)和為()A. B. C. D.6.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A. B. C. D.7.若一個(gè)三角形,采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原三角形面積的()A.倍 B.2倍 C.倍 D.倍8.在1和19之間插入個(gè)數(shù),使這個(gè)數(shù)成等差數(shù)列,若這個(gè)數(shù)中第一個(gè)為,第個(gè)為,當(dāng)取最小值時(shí),的值是()A.4 B.5 C.6 D.79.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若,則()A. B. C. D.10.在中,若,則下列結(jié)論錯(cuò)誤的是()A.當(dāng)時(shí),是直角三角形 B.當(dāng)時(shí),是銳角三角形C.當(dāng)時(shí),是鈍角三角形 D.當(dāng)時(shí),是鈍角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知腰長為的等腰直角△中,為斜邊的中點(diǎn),點(diǎn)為該平面內(nèi)一動點(diǎn),若,則的最小值________.12.某球的體積與表面積的數(shù)值相等,則球的半徑是13.已知數(shù)列中,,當(dāng)時(shí),,數(shù)列的前項(xiàng)和為_____.14.已知點(diǎn)及其關(guān)于原點(diǎn)的對稱點(diǎn)均在不等式表示的平面區(qū)域內(nèi),則實(shí)數(shù)的取值范圍是____.15.函數(shù)的值域是________.16.已知正實(shí)數(shù)滿足,則的最大值為_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,,均為銳角,且.(1)求的值;(2)若,求的值.18.等差數(shù)列中,公差,,.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.19.如圖,在四棱錐中,底面是正方形,底面,點(diǎn)是的中點(diǎn),點(diǎn)是和的交點(diǎn).(1)證明:平面;(2)求三棱錐的體積.20.已知數(shù)列滿足:,,.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)記(),用數(shù)學(xué)歸納法證明:,21.已知數(shù)列為遞增的等差數(shù)列,,且成等比數(shù)列.?dāng)?shù)列的前項(xiàng)和為,且滿足.(1)求,的通項(xiàng)公式;(2)令,求的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

由已知利用余弦定理即可解得的值.【詳解】解:,,,由余弦定理可得:,解得:,故選:A.【點(diǎn)睛】本題主要考查余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】分析:利用對立事件、互斥事件的定義求解.詳解:從裝有兩個(gè)紅球和三個(gè)黑球的口袋里任取兩個(gè)球,在A中,“至少有一個(gè)黑球”與“都是黑球”能同時(shí)發(fā)生,不是互斥事件,故A錯(cuò)誤;在B中,“至少有一個(gè)黑球”與“至少有一個(gè)紅球”能同時(shí)發(fā)生,不是互斥事件,故B錯(cuò)誤;在C中,“恰好有一個(gè)黑球”與“恰好有兩個(gè)黑球”不能同時(shí)發(fā)生,但能同時(shí)不發(fā)生,是互斥而不對立的兩個(gè)事件,故C正確;在D中,“至少有一個(gè)黑球”與“都是紅球”是對立事件,故D錯(cuò)誤.故答案為:C點(diǎn)睛:(1)本題主要考查互斥事件和對立事件的定義,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平.(2)互斥事件指的是在一次試驗(yàn)中,不可能同時(shí)發(fā)生的兩個(gè)事件,對立事件指的是在一次試驗(yàn)中,不可能同時(shí)發(fā)生的兩個(gè)事件,且在一次試驗(yàn)中,必有一個(gè)發(fā)生的兩個(gè)事件.注意理解它們的區(qū)別和聯(lián)系.3、C【解析】

求出函數(shù)的圖象分別向左平移個(gè)單位,向右平移個(gè)單位后的函數(shù)解析式,再根據(jù)其圖象與函數(shù)的圖象重合,可分別得關(guān)于,的方程,解之即可.【詳解】解:將函數(shù)的圖象向左平移個(gè)單位,得函數(shù),其圖象與的圖象重合,,,,故,,,當(dāng)時(shí),取得最小值為.將函數(shù)的圖象向右平移個(gè)單位,得到函數(shù),其圖象與的圖象重合,,,,故,,當(dāng)時(shí),取得最小值為,的最小值為,故答案為:.【點(diǎn)睛】本題主要考查誘導(dǎo)公式,函數(shù)的圖象變換規(guī)律,屬于基礎(chǔ)題.4、A【解析】

設(shè)長方體的棱長為,球的半徑為,根據(jù)題意有,再根據(jù)球的直徑是長方體的體對角線求解.【詳解】設(shè)長方體的棱長為,球的半徑為,根據(jù)題意,,解得,所以,所以外接球的表面積,故選:A【點(diǎn)睛】本題主要考查了球的組合體問題,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5、D【解析】

利用等差數(shù)列的通項(xiàng)公式與求和公式可得,再利用,可得,,.即可得出.【詳解】解:為等差數(shù)列的前項(xiàng)和,且,,.可得,則公差.,,則,,,.?dāng)?shù)列的前項(xiàng)和為:.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、對數(shù)運(yùn)算性質(zhì)、取整函數(shù),考查了推理能力與計(jì)算能力,屬于中檔題.6、D【解析】

本題首先可根據(jù)數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列以及計(jì)算出的值,然后根據(jù)對數(shù)的相關(guān)運(yùn)算以及等比中項(xiàng)的相關(guān)性質(zhì)即可得出結(jié)果.【詳解】因?yàn)榈缺葦?shù)列的各項(xiàng)均為正數(shù),,所以,,所以,故選D.【點(diǎn)睛】本題考查對數(shù)的相關(guān)運(yùn)算以及等比中項(xiàng)的相關(guān)性質(zhì),考查的公式為以及在等比數(shù)列中有,考查計(jì)算能力,是簡單題.7、C【解析】

以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法看三角形底邊長和高的變化即可.【詳解】以三角形的一邊為x軸,高所在的直線為y軸,由斜二測畫法知,三角形的底長度不變,高所在的直線為y′軸,長度減半,故三家性的高變?yōu)樵瓉淼膕in45°=,故直觀圖中三角形面積是原三角形面積的.故選C.【點(diǎn)睛】本題重點(diǎn)考查了斜二側(cè)畫法、平面圖形的面積的求解方法等知識,屬于中檔題.解題關(guān)鍵是準(zhǔn)確理解斜二側(cè)畫法的內(nèi)涵,與x軸平行的線段長度保持不變,與y軸平行的線段的長度減少為原來的一半.8、B【解析】

設(shè)等差數(shù)列公差為,可得,再利用基本不等式求最值,從而求出答案.【詳解】設(shè)等差數(shù)列公差為,則,從而,此時(shí),故,所以,即,當(dāng)且僅當(dāng),即時(shí)取“=”,又,解得,所以,所以,故選:B.【點(diǎn)睛】本題主要考查數(shù)列和不等式的綜合運(yùn)用,需要學(xué)生對所學(xué)知識融會貫通,靈活運(yùn)用.9、A【解析】

由正弦定理可得,再結(jié)合求解即可.【詳解】解:由,又,則,由,則,故選:A.【點(diǎn)睛】本題考查了正弦定理,屬基礎(chǔ)題.10、D【解析】

由正弦定理化簡已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識逐一分析各個(gè)選項(xiàng)即可得解.【詳解】解:為非零實(shí)數(shù)),可得:,由正弦定理,可得:,對于A,時(shí),可得:,可得,即為直角,可得是直角三角形,故正確;對于B,時(shí),可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對于C,時(shí),可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對于D,時(shí),可得:,可得,這樣的三角形不存在,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應(yīng)用,考查了分類討論思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

如圖建立平面直角坐標(biāo)系,∴,當(dāng)sin時(shí),得到最小值為,故選.12、3【解析】試題分析:,解得.考點(diǎn):球的體積和表面積13、.【解析】

首先利用數(shù)列的關(guān)系式的變換求出數(shù)列為等差數(shù)列,進(jìn)一步求出數(shù)列的通項(xiàng)公式,最后求出數(shù)列的和.【詳解】解:數(shù)列中,,當(dāng)時(shí),,整理得,即,∴數(shù)列是以為首項(xiàng),6為公差的等差數(shù)列,故,所以,故答案為:.【點(diǎn)睛】本題主要考查定義法判斷等差數(shù)列,考查等差數(shù)列的前項(xiàng)和,考查運(yùn)算能力和推理能力,屬于中檔題.14、【解析】

根據(jù)題意,設(shè)與關(guān)于原點(diǎn)的對稱,分析可得的坐標(biāo),由二元一次不等式的幾何意義可得,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,設(shè)與關(guān)于原點(diǎn)的對稱,則的坐標(biāo)為,若、均在不等式表示的平面區(qū)域內(nèi),則有,解可得:,即的取值范圍為,;故答案為,.【點(diǎn)睛】本題考查二元一次不等式表示平面區(qū)域的問題,涉及不等式的解法,屬于基礎(chǔ)題.15、【解析】

求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關(guān)系即可求解.【詳解】因?yàn)楹瘮?shù),當(dāng)時(shí)是單調(diào)減函數(shù)當(dāng)時(shí),;當(dāng)時(shí),所以在上的值域?yàn)楦鶕?jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題求一個(gè)反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質(zhì)和反函數(shù)的性質(zhì)等知識,屬于基礎(chǔ)題.16、【解析】

對所求式子平邊平方,再將代入,從而將問題轉(zhuǎn)化為求【詳解】∵∵,∴,∴,等號成立當(dāng)且僅當(dāng).故答案為:.【點(diǎn)睛】本題考查條件等式下利用基本不等式求最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意等號成立的條件.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)計(jì)算表達(dá)出,再根據(jù),兩邊平方求化簡即可求得.(2)根據(jù),再利用余弦的差角公式展開后分別計(jì)算求解即可.【詳解】(1)由題意,得,,,,.(2),,均為銳角,仍為銳角,,,.【點(diǎn)睛】本題主要考查了根據(jù)向量的數(shù)量積列出關(guān)于三角函數(shù)的等式,再利用三角函數(shù)中的和差角以及湊角求解的方法.屬于中檔題.18、(1)(2)【解析】

(1)由和可列出方程組,解出和,即得通項(xiàng)公式;(2)將(1)中所得通項(xiàng)公式代入,列項(xiàng),用裂項(xiàng)相消法求的前n項(xiàng)和.【詳解】解:(1)因?yàn)?,,所以因?yàn)?,所以故的通?xiàng)公式為.(2)因?yàn)椋?【點(diǎn)睛】本題考查求等差數(shù)列通項(xiàng)公式和用裂項(xiàng)相消法求數(shù)列前n項(xiàng)和,是典型考題.19、(1)證明見解析;(2).【解析】

(1)在中,利用中位線性質(zhì)得到,證明平面.(2)直接利用體積公式得到答案.【詳解】在中,點(diǎn)是的中點(diǎn),底面是正方形點(diǎn)為中點(diǎn)根據(jù)中位線性質(zhì)得到,平面,故平面.(2)底面【點(diǎn)睛】本題考查了線面平行,三棱錐體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.20、(1)證明見解析,;(2)見解析【解析】

(1)定義法證明:;(2)采用數(shù)學(xué)歸納法直接證明(注意步驟).【詳解】由可知:,則有,即,所以為等差數(shù)列,且首相為,公差,所以,故;(2),當(dāng)時(shí),成立;假設(shè)當(dāng)時(shí),不等式成立則:;當(dāng)時(shí),,因?yàn)椋?,則,故時(shí)不等式成立,綜上可知:.【點(diǎn)睛】數(shù)學(xué)歸納法的一般步驟:(1)命題成立;(2)假設(shè)命題成立;(3)證明命題成立(一定要借助假設(shè),否則不能稱之為數(shù)學(xué)歸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論