2023年廣東省江門市高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023年廣東省江門市高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023年廣東省江門市高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023年廣東省江門市高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023年廣東省江門市高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知的頂點坐標為,,,則邊上的中線的長為()A. B. C. D.2.在中,若,則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不能確定3.已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是()A.(0,1) B. C. D.4.為了調(diào)查某工廠生產(chǎn)的一種產(chǎn)品的尺寸是否合格,現(xiàn)從500件產(chǎn)品中抽出10件進行檢驗,先將500件產(chǎn)品編號為000,001,002,…,499,在隨機數(shù)表中任選一個數(shù)開始,例如選出第6行第8列的數(shù)4開始向右讀?。榱吮阌谡f明,下面摘取了隨機數(shù)表附表1的第6行至第8行),即第一個號碼為439,則選出的第4個號碼是()A.548 B.443 C.379 D.2175.已知集合A={x︱x>-2}且,則集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.6.已知四棱錐中,平面平面,其中為正方形,為等腰直角三角形,,則四棱錐外接球的表面積為()A. B. C. D.7.在中,角所對的邊分別為.若,,,則等于()A. B. C. D.8.角α的終邊上有一點P(a,|a|),a∈R且a≠0,則sinα值為()A. B. C.1 D.或9.執(zhí)行如圖所示的程序框圖,若輸人的n值為2019,則S=A.-1 B.-12 C.110.如圖所示的陰影部分是由軸及曲線圍成,在矩形區(qū)域內(nèi)隨機取一點,則該點取自陰影部分的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列an滿足12a112.方程,的解集是__________.13.在中,角所對的邊分別為,,的平分線交于點D,且,則的最小值為________.14.在公差為的等差數(shù)列中,有性質(zhì):,根據(jù)上述性質(zhì),相應(yīng)地在公比為等比數(shù)列中,有性質(zhì):____________.15.若不等式對于任意都成立,則實數(shù)的取值范圍是____________.16.正方體中,分別是的中點,則所成的角的余弦值是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.四棱錐中,,,底面,,直線與底面所成的角為,、分別是、的中點.(1)求證:直線平面;(2)若,求證:直線平面;(3)求棱錐的體積.18.已知數(shù)列為等比數(shù)列,,公比,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,求使的的取值范圍.19.如圖,在平面直角坐標系xOy中,已知以M點為圓心的圓及其上一點.(1)設(shè)圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標準方程;(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點且,求直線l的方程.20.已知公差不為零的等差數(shù)列滿足:,且成等比數(shù)列.(1)求數(shù)列的通項公式.(2)記為數(shù)列的前項和,是否存在正整數(shù),使得?若存在,請求出的最小值;若不存在,請說明理由.21.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用中點坐標公式求得,再利用兩點間距離公式求得結(jié)果.【詳解】由,可得中點又本題正確選項:【點睛】本題考查兩點間距離公式的應(yīng)用,關(guān)鍵是能夠利用中點坐標公式求得中點坐標.2、A【解析】

由正弦定理得,再由余弦定理求得,得到,即可得到答案.【詳解】因為在中,滿足,由正弦定理知,代入上式得,又由余弦定理可得,因為C是三角形的內(nèi)角,所以,所以為鈍角三角形,故選A.【點睛】本題主要考查了利用正弦定理、余弦定理判定三角形的形狀,其中解答中合理利用正、余弦定理,求得角C的范圍是解答本題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解析】

先求得直線y=ax+b(a>0)與x軸的交點為M(,0),由0可得點M在射線OA上.求出直線和BC的交點N的坐標,①若點M和點A重合,求得b;②若點M在點O和點A之間,求得b;③若點M在點A的左側(cè),求得b>1.再把以上得到的三個b的范圍取并集,可得結(jié)果.【詳解】由題意可得,三角形ABC的面積為1,由于直線y=ax+b(a>0)與x軸的交點為M(,0),由直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,可得b>0,故0,故點M在射線OA上.設(shè)直線y=ax+b和BC的交點為N,則由可得點N的坐標為(,).①若點M和點A重合,如圖:則點N為線段BC的中點,故N(,),把A、N兩點的坐標代入直線y=ax+b,求得a=b.②若點M在點O和點A之間,如圖:此時b,點N在點B和點C之間,由題意可得三角形NMB的面積等于,即,即,可得a0,求得b,故有b.③若點M在點A的左側(cè),則b,由點M的橫坐標1,求得b>a.設(shè)直線y=ax+b和AC的交點為P,則由求得點P的坐標為(,),此時,由題意可得,三角形CPN的面積等于,即?(1﹣b)?|xN﹣xP|,即(1﹣b)?||,化簡可得2(1﹣b)2=|a2﹣1|.由于此時b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.兩邊開方可得(1﹣b)1,∴1﹣b,化簡可得b>1,故有1b.綜上可得b的取值范圍應(yīng)是,故選B.【點睛】本題主要考查確定直線的要素,點到直線的距離公式以及三角形的面積公式的應(yīng)用,還考查了運算能力以及綜合分析能力,分類討論思想,屬于難題.4、D【解析】

利用隨機數(shù)表寫出每一個數(shù)字即得解.【詳解】第一個號碼為439,第二個號碼為495,第三個號碼為443,第四個號碼為217.故選:D【點睛】本題主要考查隨機數(shù)表,意在考查學生對該知識的理解掌握水平.5、D【解析】

A、B={x|x>2或x<-2},

∵集合A={x|x>-2},

∴A∪B={x|x≠-2}≠A,不合題意;

B、B={x|x≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合題意;

C、B={y|y≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合題意;

D、若B={-1,0,1,2,3},

∵集合A={x|x>-2},

∴A∪B={x|x>-2}=A,與題意相符,

故選D.6、D【解析】

因為為等腰直角三角形,,故,則點到平面的距離為,而底面正方形的中心到邊的距離也為,則頂點正方形中心的距離,正方形的外接圓的半徑為,故正方形的中心是球心,則球的半徑為,所以該幾何體外接球的表面積,應(yīng)選D.7、B【解析】

利用正弦定理可求.【詳解】由正弦定理得.故選B.【點睛】本題考查正弦定理的應(yīng)用,屬于容易題.8、B【解析】

根據(jù)三角函數(shù)的定義,求出OP,即可求出的值.【詳解】因為,所以,故選B.【點睛】本題主要考查三角函數(shù)的定義應(yīng)用.9、B【解析】

根據(jù)程序框圖可知,當k=2019時結(jié)束計算,此時S=cos【詳解】計算過程如下表所示:周期為6n2019k12…20182019S12-1…-k<n是是是是否故選B.【點睛】本題考查程序框圖,選用表格計算更加直觀,此題關(guān)鍵在于判斷何時循環(huán)結(jié)束.10、A【解析】,所以,故選A。二、填空題:本大題共6小題,每小題5分,共30分。11、14,n=1【解析】

試題分析:這類問題類似于Sn=f(an)的問題處理方法,在12a1+122a2+...+1.考點:數(shù)列的通項公式.12、【解析】

用正弦的二倍角公式展開,得到,分兩種情況討論得出結(jié)果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.13、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡得,因此當且僅當時取等號,則的最小值為.點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.14、【解析】

根據(jù)題中條件,類比等差數(shù)列的性質(zhì),可直接得出結(jié)果.【詳解】因為在公差為的等差數(shù)列中,有性質(zhì):,類比等差數(shù)列的性質(zhì),可得:在公比為等比數(shù)列中,故答案為:【點睛】本題主要考查類比推理,只需根據(jù)題中條件,結(jié)合等差數(shù)列與等比數(shù)列的特征,即可得出結(jié)果,屬于??碱}型.15、【解析】

利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實數(shù)的取值范圍是.故答案為:【點睛】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.16、【解析】

取的中點,由得出異面直線與所成的角為,然后在由余弦定理計算出,可得出結(jié)果.【詳解】取的中點,由且可得為所成的角,設(shè)正方體棱長為,中利用勾股定理可得,又,由余弦定理可得,故答案為.【點睛】本題考查異面直線所成角的計算,一般利用平移直線找出異面直線所成的角,再選擇合適的三角形,利用余弦定理或銳角三角函數(shù)來計算,考查空間想象能力與計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解析】

(1)由中位線定理可得,,再根據(jù)平行公理可得,,即可根據(jù)線面平行的判定定理證出;(2)根據(jù)題意可計算出,而是的中點,可得,又,即可根據(jù)線面垂直的判定定理證出;(3)根據(jù)等積法,即可求出.【詳解】(1)證明:連接,,,、是、中點,,從而.又平面,平面,直線平面;(2)證明:,,.底面,直線與底面成角,..是的中點,.,.面,面,直線平面;(3)由題可知,,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理的應(yīng)用,以及利用等積法求三棱錐的體積,意在考查學生的直觀想象能力,邏輯推理能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.18、(1);(2)【解析】

(1)利用等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進而求得數(shù)列的通項公式.(2)先求得的表達式,利用裂項求和法求得,解不等式求得的取值范圍.【詳解】解:(1)∵成等差數(shù)列,得,∵等比數(shù)列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【點睛】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,考查裂項求和法,考查不等式的解法,屬于中檔題.19、(1)(2)或.【解析】

(1)根據(jù)由圓心在直線y=6上,可設(shè),再由圓N與y軸相切,與圓M外切得到圓N的半徑為和得解.(2)由直線l平行于OA,求得直線l的斜率,設(shè)出直線l的方程,求得圓心M到直線l的距離,再根據(jù)垂徑定理確定等量關(guān)系,求直線方程.【詳解】(1)圓M的標準方程為,所以圓心M(7,6),半徑為5,.由圓N圓心在直線y=6上,可設(shè)因為圓N與y軸相切,與圓M外切所以,圓N的半徑為從而解得.所以圓N的標準方程為.(2)因為直線l平行于OA,所以直線l的斜率為.設(shè)直線l的方程為,即則圓心M到直線l的距離因為而所以解得或.故直線l的方程為或.【點睛】本題主要考查了直線方程,圓的方程,直線與直線,直線與圓,圓與圓的位置關(guān)系,還考查了運算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.20、(1)(2)存在,最小值是.【解析】

(1)利用等比中項的性質(zhì)列方程,將已知條件轉(zhuǎn)化為的形式列方程組,解方程組求得,由此求得數(shù)列的通項公式.(2)首先求得數(shù)列的前項和,由列不等式,解一元二次不等式求得的取值范圍,由此求得的最小值.【詳解】(1)設(shè)等差數(shù)列的公差為(),由題意得化簡,得.因為,所以,解得所以,即數(shù)列的通項公式是().(2)由(1)可得.假設(shè)存在正整數(shù),使得,即,即,解得或(舍).所以所求的最小值是.【點睛】本小題主要考查等比中項的性質(zhì),考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和公式,考查一元二次不等式的解法,屬于中檔題.21、(1)最小正周期為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論