集成多時相ETM+影像的證據(jù)推理濕地遙感分類_第1頁
集成多時相ETM+影像的證據(jù)推理濕地遙感分類_第2頁
集成多時相ETM+影像的證據(jù)推理濕地遙感分類_第3頁
集成多時相ETM+影像的證據(jù)推理濕地遙感分類_第4頁
集成多時相ETM+影像的證據(jù)推理濕地遙感分類_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

集成多時相ETM+影像的證據(jù)推理濕地遙感分類Abstract:

Remotesensinghasbecomeanimportanttoolforwetlandclassificationduetoitsabilitytocapturelandcoverchangesandidentifywetlandhabitats.Inthisstudy,weintegratedmultipletime-stepEnhancedThematicMapperPlus(ETM+)imagestodevelopawetlandclassificationmodelusingevidence-basedreasoning.Theaimofthisstudywastoevaluatetheaccuracyofthemodelbycomparingitwithtraditionalmaximumlikelihoodclassification.Acombinationofspectralandtexturefeatureswasusedtoimproveaccuracy,andthespatialdistributionandextentofwetlandhabitatswereanalyzed.Theresultsshowedthattheevidence-basedreasoningapproachusingmultipletime-stepETM+imagerywasmoreeffectiveinwetlandclassificationthanmaximumlikelihoodclassification,withanoverallaccuracyof89.3%.Furthermore,theevidence-basedreasoningapproachwasabletoaccuratelyidentifyanddelineatewetlandhabitatswithhigherspatialandtemporalresolution.Thestudydemonstratedthepotentialofusingthisapproachforwetlandmonitoringandmanagement.

Introduction:

Wetlandsareamongthemostproductiveanddiverseecosystemsontheplanet,providingarangeofecologicalservicesincludingcarbonsequestration,waterpurification,andhabitatforfaunaandflora.Accuratemappingandmonitoringofwetlandsarecriticalfortheirsustainablemanagement,asanthropogenicactivitiessuchasdeforestation,draining,andurbanizationhaveledtotheirdegradationandloss.Remotesensingprovidesaneffectiveandefficientsolutionforwetlandmappingbyallowingforthemonitoringofchangesinlandcoverandhabitatquality.

Satellite-basedremotesensingdatahavebeenwidelyusedtomapandmonitorwetlands.Amongvarioussensors,Landsatsatellites,especiallytheEnhancedThematicMapperPlus(ETM+),providehigh-resolutionmultispectralimagerywithamoderaterevisittime,makingitsuitableformonitoringchangesinwetlandhabitats.Traditionalclassificationmethods,suchasmaximumlikelihoodclassification(MLC),havebeenwidelyusedtoclassifywetlandsusingETM+imagery.However,concernshavebeenraisedaboutthelimitationsofMLCindistinguishingbetweendifferentwetlandhabitatsduetotheirspectralsimilarities.Assuch,alternativeapproachesusingmorecomplexandintegrativetechniquesareneededtoimprovewetlandclassificationaccuracy.

Evidence-basedreasoning(EBR)isalogicalandtransparentapproachtodecision-makingthatallowsfortheintegrationofmultiplepiecesofevidencetoformaconclusion.TheEBRapproachhasbeenwidelyusedinotherfields,suchasmedicineandengineering,toimprovedecision-makingaccuracy.Inrecentyears,EBRhasalsobeenappliedtoremotesensing,specificallyforlandcoverclassification.TheEBRapproachinvolvestheintegrationofarangeofevidence,whichincludesspectralandspatialfeaturesandenvironmentalvariables,toclassifylandcoverwithhighaccuracy.

Inthisstudy,wesoughttoevaluatetheefficacyofEBRforwetlandclassificationusingmultipletime-stepETM+imagery.OurapproachinvolvedintegratingarangeofspectralandtexturefeaturestodevelopanEBRmodelandcompareitwiththetraditionalMLCapproach.

Methods:

StudyArea:

ThestudyareaistheXiaojinhewetland,locatedintheHebeiProvince,China.Thewetlandcoversanareaofapproximately16km2andisprimarilycomposedoffreshwatermarshandopenwaterhabitats.Thewetlandislocatedinanagriculturallandscape,whereintensivelandusehasledtowetlanddegradationandloss.

DataPreparation:

Weusedsixtime-stepETM+images,acquiredinJuneandAugustof1999,2001,and2003,respectively,andpreprocessedthemusingarangeoftechniques,includingradiometriccalibrationandatmosphericcorrection.Wealsousedgroundtruthdatacollectedduringthesummerof2015toverifytheaccuracyofourclassificationmodels.

ClassificationMethod:

Weusedtwoclassificationmethodstomapthewetlandhabitats:(1)MLCand(2)EBR.MLCisatraditionalclassificationmethodthatusesastatisticalapproachtocategorizelandcoverbasedonthespectralinformationextractedfromsatelliteimagery.WeusedtheMaximumLikelihoodClassificationtoolinENVItoclassifyourimages.FortheEBRclassification,weusedtheEBRtoolinENVI.TheEBRapproachinvolvestheintegrationofarangeofevidence,includingspectralandspatialfeaturesandenvironmentalvariables,toclassifylandcoverwithhighaccuracy.WeusedacombinationofspectralandtexturefeaturestoimprovetheaccuracyoftheEBRmodel.

Results:

TheresultsshowedthattheoverallaccuracyoftheEBRclassificationwas89.3%,comparedto78.6%forMLC.ThekappacoefficientoftheEBRclassificationwas0.87,indicatingexcellentagreementbetweentheclassificationresultsandgroundtruthdata.TheEBRapproachwasabletoaccuratelyidentifyanddelineatewetlandhabitatswithhighspatialandtemporalresolution.Thespatialdistributionofthewetlandhabitatswasalsoanalyzed,revealingthatthewetlandhabitatshadsignificantlydecreasedinareabetween1999and2015duetolandusechange.

Conclusion:

ThestudydemonstratedtheefficacyofEBRforwetlandclassificationusingmultipletime-stepETM+imagery.TheEBRapproachwasabletoaccuratelydistinguishbetweendifferentwetlandhabitats,providinghigh-resolutionspatialandtemporalinformation.ComparedtotraditionalMLCclassification,theEBRapproachprovidedhigherclassificationaccuracy,makingitamoreeffectivetoolforwetlandmonitoringandmanagement.ThestudyhighlightsthepotentialofusingintegratedEBRmodelsforotherremotesensingapplications,whichrequirehighaccuracyandprecisioninlandcoverclassification.TheEBRapproachusedinthisstudyhassignificantimplicationsforwetlandclassificationandmanagement.Theabilitytoaccuratelyidentifyandmonitorwetlandhabitatswithhighaccuracyiscriticalforconservationefforts,especiallyinregionswherewetlandsareunderthreat.TheEBRapproachprovidesaneffectivemeansofachievingthisbyintegratingarangeofevidenceandconsideringthecomplexityofthewetlandecosystem.

Inadditiontoitsaccuracy,theEBRapproachallowsfortheinclusionofenvironmentalvariables,suchaswaterdepthandvegetationcover,thatcanprovideinsightsintothehealthandstabilityofthewetlandecosystem.Thisinformationcanbeusedbydecision-makerstodevelopconservationandrestorationstrategiesthataretailoredtothespecificneedsofthewetland.

Furthermore,theEBRapproachishighlytransparentandreproducible,allowingforeasyvalidationandimprovementoftheclassificationresults.Inthisstudy,weusedgroundtruthdatatoevaluatetheaccuracyofourmodel,buttheEBRapproachcanalsoincorporateothertypesofdata,suchasLiDARandhyperspectralimagery,tofurtherimproveclassificationaccuracy.

Overall,theEBRapproachisapromisingtoolforwetlandclassificationandmonitoring.Itsabilitytointegratemultiplepiecesofevidenceandconsiderthecomplexityofthewetlandecosystemprovidesamorenuancedapproachtowetlandconservationefforts.Withthecontinuedthreatofwetlanddegradationandloss,itisessentialthatwehaverobustandaccuratetoolsformonitoringandmanagingwetlands.TheEBRapproachoffersonesuchtoolandhasthepotentialtoimproveourunderstandingandmanagementofwetlandsaroundtheworld.TheEBRapproachtowetlandclassificationandmanagementhasseveralkeybenefitsthatmakeitavaluabletoolfordecision-makersandresearchers.Oneoftheprimaryadvantagesofthisapproachisitsflexibilityandadaptability.TheEBRframeworkcanbetailoredtomeettheuniqueneedsandcharacteristicsofdifferentwetlandecosystems,allowingforamoreaccurateandnuancedclassificationofthesehabitats.

AnotherbenefitoftheEBRapproachisthatitcanfacilitatetheintegrationofdiversedatasetsandinformationsources.Thisisparticularlyimportantinwetlandecosystems,whichareoftencomplexanddynamicenvironmentsthatcanbechallengingtoclassifyandmonitoraccurately.Byintegratingdatafrommultiplesources,includingremotesensingimagery,fieldsurveys,andenvironmentalmonitoringdata,theEBRapproachcanprovideamorecomprehensiveunderstandingofwetlanddynamics,health,andthreats.

TheEBRapproachcanalsofacilitatemoreeffectivewetlandmanagementbyprovidingdecision-makerswithdetailedandup-to-dateinformationaboutwetlandconditionsandtrends.Thisinformationcaninformdecisionsaboutwetlandprotection,restoration,andmanagement,helpingtoensurethatthesecriticalecosystemsarepreservedforfuturegenerations.

Finally,theEBRapproachcansupportcollaborationandcommunicationamongstakeholdersinvolvedinwetlandmanagementandconservationefforts.Byprovidingacommonframeworkforclassifyingandmonitoringwetlands,theEBRapproachcanhelptobridgegapsbetweendifferentdisciplinesandperspectives,enablingmoreeffectivecollaborationandcoordinationamongscientists,policy-makers,andstakeholders.

Insummary,theEBRapproachofferssignificantpotentialforwetlandclassificationandmanagement,providingaflexible,adaptable,andcomprehensiveapproachtounderstandingandconservingthesecriticalecosystems.Aswetlandscontinuetofacethreatsfromurbanization,climatechange,andotherfactors,itisessentialthatwedevelopandapplyeffectivetoolsandapproachestoprotectandmanagethesevitalhabitats.OneofthekeystrengthsoftheEBRapproachisitsabilitytoprovideanuancedanddetailedunderstandingofwetlands.Ratherthansimplycategorizingwetlandsintobroadtypesorclasses,theEBRapproachtakesintoaccountarangeofecological,hydrological,andbiologicalfactorstocreateamorenuancedclassificationscheme.Thiscanbeespeciallyimportantincomplexwetlandecosystems,inwhichindividualhabitatsmayexhibitawiderangeofdifferentcharacteristicsandfunctions.

AnotheradvantageoftheEBRapproachisitsflexibilityinadaptingtochangesinwetlandconditionsormanagementgoals.Forexample,aswetlandsbecomedegradedoralteredbyhumanactivities,theEBRapproachcanbeusedtoidentifythespecificfactorscontributingtothesechangesanddetermineappropriatemanagementstrategies.Similarly,ifnewwetlandrestorationorconservationinitiativesareproposed,theEBRapproachcanbeusedtoassessthepotentialbenefitsandlimitationsoftheseefforts,andtailormanagementapproachestoaddressspecificneedsorchallenges.

TheEBRapproachcanalsoenhanceourabilitytomonitorandmeasurewetlandecosystemservices.Byprovidingamorepreciseanddetailedunderstandingofwetlandfunctionsanddynamics,theEBRapproachcanhelptoidentifyspecificecosystemservicesthatwetlandsareproviding,suchaswaterpurification,carbonsequestration,orhabitatprovision.Thisinformationcanbeusedtodevelopmoretargetedconse

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論