高一數(shù)學教案(優(yōu)秀5篇)_第1頁
高一數(shù)學教案(優(yōu)秀5篇)_第2頁
高一數(shù)學教案(優(yōu)秀5篇)_第3頁
高一數(shù)學教案(優(yōu)秀5篇)_第4頁
高一數(shù)學教案(優(yōu)秀5篇)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

第第頁高一數(shù)學教案(優(yōu)秀5篇)作為一名無私奉獻的老師,時常要開展教案準備工作,借助教案可以有效提升自己的教學能力。我們該怎么去寫教案呢?這次漂亮的我為親帶來了5篇《高一數(shù)學教案》,可以幫助到您,就是本文我最大的樂趣哦。

高中數(shù)學教案篇一

教學目標:

1、了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關系。

2、會求一些簡單函數(shù)的反函數(shù)。

3、在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學思想方法的認識。

4、進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

教學重點:求反函數(shù)的方法。

教學難點:反函數(shù)的概念。

教學過程:

教學活動

設計意圖一、創(chuàng)設情境,引入新課

1、復習提問

①函數(shù)的概念

②y=f(x)中各變量的意義

2、同學們在物理課學過勻速直線運動的位移和時間的函數(shù)關系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學習的內(nèi)容。

3、板書課題

由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。

二、實例分析,組織探究

1、問題組一:

(用投影給出函數(shù)與;與()的圖象)

(1)這兩組函數(shù)的圖像有什么關系?這兩組函數(shù)有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

(2)由,已知y能否求x?

(3)是否是一個函數(shù)?它與有何關系?

(4)與有何聯(lián)系?

2、問題組二:

(1)函數(shù)y=2x1(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?

(2)函數(shù)(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?

(3)函數(shù)()的定義域與函數(shù)()的值域有什么關系?

3、滲透反函數(shù)的概念。

(教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

從學生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力。

通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設計問題,使學生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎。

三、師生互動,歸納定義

1、(根據(jù)上述實例,教師與學生共同歸納出反函數(shù)的定義)

函數(shù)y=f(x)(x∈A)中,設它的值域為C.我們根據(jù)這個函數(shù)中x,y的關系,用y把x表示出來,得到x=j(y)。如果對于y在C中的任何一個值,通過x=j(y),x在A中都有的值和它對應,那么,x=j(y)就表示y是自變量,x是自變量y的函數(shù)。這樣的函數(shù)x=j(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作:??紤]到"用x表示自變量,y表示函數(shù)"的習慣,將中的x與y對調(diào)寫成。

2、引導分析:

1)反函數(shù)也是函數(shù);

2)對應法則為互逆運算;

3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

6)要理解好符號f;

7)交換變量x、y的原因。

3、兩次轉(zhuǎn)換x、y的對應關系

(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

4、函數(shù)與其反函數(shù)的關系

函數(shù)y=f(x)

函數(shù)

定義域

A

C

值域

C

A

四、應用解題,總結(jié)步驟

1、(投影例題)

【例1】求下列函數(shù)的反函數(shù)

(1)y=3x-1(2)y=x1

【例2】求函數(shù)的反函數(shù)。

(教師板書例題過程后,由學生總結(jié)求反函數(shù)步驟。)

2、總結(jié)求函數(shù)反函數(shù)的步驟:

1°由y=f(x)反解出x=f(y)。

2°把x=f(y)中x與y互換得。

3°寫出反函數(shù)的定義域。

(簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

(2)的反函數(shù)是________.

(3)(x<0)的反函數(shù)是__________.

在上述探究的基礎上,揭示反函數(shù)的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學生體會函數(shù)與方程、一般到特殊的數(shù)學思想,并對數(shù)學的符號語言有更好的把握。

通過動畫演示,表格對照,使學生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解。

通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結(jié),培養(yǎng)學生分析、思考的習慣,以及歸納總結(jié)的能力。

題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進。并體現(xiàn)了對定義的反思理解。學生思考練習,師生共同分析糾正。

五、鞏固強化,評價反饋

1、已知函數(shù)y=f(x)存在反函數(shù),求它的反函數(shù)y=f(x)

(1)y=-2x3(xR)(2)y=-(xR,且x)

(3)y=(xR,且x)

2、已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

五、反思小結(jié),再度設疑

本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟?;榉春瘮?shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

(讓學生談一下本節(jié)課的學習體會,教師適時點撥)

進一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調(diào)動學生的積極性。"問題是數(shù)學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。

六、作業(yè)

習題2.4第1題,第2題

進一步鞏固所學的知識。

教學設計說明

"問題是數(shù)學的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導剖析,最終形成概念。

反函數(shù)的概念是教學中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調(diào)動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維。使學生自然成為學習的主人。

高一數(shù)學教案篇二

1、知識與技能

(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);

(2)理解任意角的三角函數(shù)不同的定義方法;

(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;

(4)掌握并能初步運用公式一;

(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)。

2、過程與方法

初中學過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號。最后主要是借助有向線段進一步認識三角函數(shù)。講解例題,總結(jié)方法,鞏固練習。

3、情態(tài)與價值

任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點。過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數(shù),但它對準確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學生對三角函數(shù)概念的理解。

本節(jié)利用單位圓上點的坐標定義任意角的正弦函數(shù)、余弦函數(shù)。這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應關系,也表明了這兩個函數(shù)之間的關系。

教學重難點

重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解。

高一數(shù)學集合教案篇三

教學目標:

1.使學生理解集合的含義,知道常用集合及其記法;

2.使學生初步了解屬于關系和集合相等的意義,初步了解有限集、無限集、空集的意義;

3.使學生初步掌握集合的表示方法,并能正確地表示一些簡單的集合。

教學重點:

集合的含義及表示方法。

教學過程:

一、問題情境

1.情境。

新生自我介紹:介紹家庭、原畢業(yè)學校、班級。

2.問題。

在介紹的過程中,常常涉及像家庭、學校、班級、男生、女生等概念,這些概念與學生相比,它們有什么共同的特征?

二、學生活動

1.介紹自己;

2.列舉生活中的集合實例;

3.分析、概括各集合實例的共同特征。

三、數(shù)學建構(gòu)

1.集合的含義:一般地,一定范圍內(nèi)不同的、確定的對象的全體組成一個集合。構(gòu)成集合的每一個個體都叫做集合的一個元素。

2.元素與集合的關系及符號表示:屬于,不屬于。

3.集合的表示方法:

另集合一般可用大寫的拉丁字母簡記為集合A、集合B.

4.常用數(shù)集的記法:自然數(shù)集N,正整數(shù)集N*,整數(shù)集Z,有理數(shù)集Q,實數(shù)集R.

5.有限集,無限集與空集。

6.有關集合知識的歷史簡介。

四、數(shù)學運用

1.例題。

例1表示出下列集合:

(1)中國的直轄市;(2)中國國旗上的顏色。

小結(jié):集合的確定性和無序性

例2準確表示出下列集合:

(1)方程x2―2x-3=0的解集;

(2)不等式2-x0的解集;

(3)不等式組的解集;

(4)不等式組2x-1-33x+10的解集。

解:略。

小結(jié):(1)集合的表示方法列舉法與描述法;

(2)集合的分類有限集⑴,無限集⑵與⑶,空集⑷

例3將下列用描述法表示的集合改為列舉法表示:

(1){(x,y)|x+y=3,xN,yN}

(2){(x,y)|y=x2-1,|x|2,xZ}

(3){y|x+y=3,xN,yN}

(4){xR|x3-2x2+x=0}

小結(jié):常用數(shù)集的記法與作用。

例4完成下列各題:

(1)若集合A={x|ax+1=0}=,求實數(shù)a的值;

(2)若-3{a-3,2a-1,a2-4},求實數(shù)a.

小結(jié):集合與元素之間的關系。

2.練習:

(1)用列舉法表示下列集合:

①{x|x+1=0};

②{x|x為15的正約數(shù)};

③{x|x為不大于10的正偶數(shù)};

④{(x,y)|x+y=2且x-2y=4};

⑤{(x,y)|x{1,2},y{1,3}};

⑥{(x,y)|3x+2y=16,xN,yN}.

(2)用描述法表示下列集合:

①奇數(shù)的集合;②正偶數(shù)的集合;③{1,4,7,10,13}

五、回顧小結(jié)

(1)集合的概念集合、元素、屬于、不屬于、有限集、無限集、空集;

(2)集合的表示列舉法、描述法以及Venn圖;

(3)集合的元素與元素的個數(shù);

(4)常用數(shù)集的記法。

高一數(shù)學教案篇四

[三維目標]

一、知識與技能:

1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關系

2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學解題的一般思想

3、了解集合元素個數(shù)問題的討論說明

二、過程與方法

通過提問匯總練習提煉的形式來發(fā)掘?qū)W生學習方法

三、情感態(tài)度與價值觀

培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維

[教學重點、難點]:會正確應用其概念和性質(zhì)做題[教具]:多媒體、實物投影儀

[教學方法]:講練結(jié)合法

[授課類型]:復習課

[課時安排]:1課時

[教學過程]:集合部分匯總

本單元主要介紹了以下三個問題:

1,集合的含義與特征

2,集合的`表示與轉(zhuǎn)化

3,集合的基本運算

一,集合的含義與表示(含分類)

1,具有共同特征的對象的全體,稱一個集合

2,集合按元素的個數(shù)分為:有限集和無窮集兩類

高一數(shù)學教案篇五

第一節(jié)集合的含義與表示

學時:1學時

[學習引導]

一、自主學習

1.閱讀課本.

2.回答問題:

⑴本節(jié)內(nèi)容有哪些概念和知識點?

⑵嘗試說出相關概念的含義?

3完成練習

4小結(jié)

二、方法指導

1、要結(jié)合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論