顯著性特征保持的點(diǎn)云模型縮放_(tái)第1頁
顯著性特征保持的點(diǎn)云模型縮放_(tái)第2頁
顯著性特征保持的點(diǎn)云模型縮放_(tái)第3頁
顯著性特征保持的點(diǎn)云模型縮放_(tái)第4頁
顯著性特征保持的點(diǎn)云模型縮放_(tái)第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

顯著性特征保持的點(diǎn)云模型縮放I.Introduction

A.Backgroundandmotivation

B.Objectivesofthestudy

C.Overviewofthepaper

II.Relatedwork

A.Literaturereviewonpointcloudscaling

B.Comparisonofdifferentmethodsusedforpointcloudscaling

C.Limitationsofexistingapproaches

III.Methodology

A.Overviewofproposedmethod

B.Preprocessingstepsforpointcloud

C.Algorithmforpreservingsalientfeaturesduringscaling

D.Post-processingsteps

IV.Experimentalresultsandanalysis

A.Datasetdescription

B.Evaluationmetricsused

C.Comparisonofproposedmethodwithexistingapproaches

D.Discussiononresultsandanalysis

V.Conclusionandfuturework

A.Summaryofthepaper

B.Contributionsoftheproposedmethod

C.Limitationsoftheproposedmethod

D.Directionsforfuturework

VI.ReferencesI.Introduction

A.Backgroundandmotivation

Pointclouddatahasbecomeincreasinglyimportantinvariousfieldssuchascomputervision,robotics,andgeographicalinformationsystems.Scalingpointcloudmodelsisanessentialtaskinmanyapplicationswherethemodelneedstoberesizedtofitindifferentenvironmentsortomatchdifferentspecifications.However,scalingpointcloudmodelscanleadtothelossofimportantfeaturesandcausedistortion,makingthemodellessusefulforitsintendedpurpose.

B.Objectivesofthestudy

Themainobjectiveofthisstudyistoproposeamethodforscalingpointcloudmodelswhilemaintainingthesalientfeaturesoftheoriginalmodel.Specifically,weaimtodevelopanalgorithmthatcanpreservegeometricandtopologicalfeaturessuchasedges,corners,andsharpcurvesduringscaling.Theproposedmethodshouldalsobescalable,efficient,andapplicabletoawiderangeofpointclouddata.

C.Overviewofthepaper

Thispaperisorganizedasfollows.SectionIIprovidesareviewofrelatedworkonpointcloudscalingandhighlightsthelimitationsofexistingapproaches.SectionIIIdescribestheproposedmethodologyindetail,includingpreprocessingsteps,thealgorithmforpreservingsalientfeatures,andpost-processingsteps.SectionIVpresentstheexperimentalresultsandanalysis,includingthedatasetdescription,evaluationmetrics,comparisonwithexistingapproaches,anddiscussionsontheresults.SectionVsummarizesthepaper,outlinesthecontributions,limitations,anddirectionsforfuturework.Finally,thepaperconcludeswithalistofreferences.II.LiteratureReview

A.Pointcloudscalingmethods

Scalingpointclouddatainvolvestransformingthepositionsofthepointswhilepreservingtheirrelativepositionsandmaintainingtheshapeandstructureofthemodel.Therehavebeenseveralmethodsproposedforscalingpointcloudmodels,includinglinearandnonlinearscaling,uniformandnon-uniformscaling,andlocalandglobalscaling.Someofthepopularmethodsincludetheuseofprincipalcomponentanalysis(PCA),iterativeclosestpoint(ICP)algorithms,andscalingbasedonmeshorsurfacemodels.

PCA-basedmethodsinvolvefindingtheprincipalaxesofthepointclouddataandscalingalongthoseaxesbasedonthedesiredscalingfactor.However,thisapproachmayresultinlossofinformationasitassumesthattheprincipalaxesalignwiththeimportantfeaturesofthemodel.ICPalgorithms,whichiterativelyadjustthepositionandorientationofaregisteredmodeltomatchatargetmodel,canalsobeusedforpointcloudscalingbyadjustingthescalefactor.However,thisapproachmaynotpreservethetopologyandgeometryofthemodel,leadingtothelossofimportantfeaturessuchasedgesandcorners.

B.Limitationsofexistingapproaches

Existingpointcloudscalingmethodshaveseverallimitations.Firstly,mostmethodscanonlyhandleuniformscaling,wherethesamescalefactorisappliedtoallpointsinthemodel.Non-uniformscaling,wheredifferentscalefactorsareappliedtodifferentregionsofthemodel,ismorechallengingandrequiresspecializedmethodsthatcanpreservethetopologyandgeometryofthemodel.

Secondly,scalingmethodsthatrelyonsurfaceormeshmodelsmaynotbesuitableforhighlyirregularornoisypointclouddata.Suchdatamayhavegaps,holes,orunevendensities,leadingtoinaccuratesurfacereconstructionandfeaturepreservation.

Finally,existingpointcloudscalingmethodsmaynotbescalableorefficientforlarge-scalepointclouddatasets.Thecomputationalcomplexityofmostmethodsincreaseswiththenumberofpointsinthemodel,makingthemunsuitableforreal-timeoronlineapplications.

C.Conclusion

Insummary,existingpointcloudscalingmethodshaveseverallimitationsthataffecttheirapplicabilityandperformance.Non-uniformscaling,preservationoftopologyandgeometry,andscalabilityaresomeofthekeychallengesthatneedtobeaddressedindevelopingarobustandeffectivepointcloudscalingmethod.Thenextsectionpresentsourproposedmethodologyforaddressingthesechallenges.III.ProposedMethodology

Inthissection,weproposeanovelpointcloudscalingmethodthataddressessomeofthelimitationsofexistingapproaches.Ourmethodinvolvesacombinationoflocalandglobalscalingthatcanhandlebothuniformandnon-uniformscaling.Localscalingisperformedbyscalingpointswithinasmallregion,whileglobalscalingisappliedtotheentiremodeltopreservetheoverallshapeandstructure.

A.Localscaling

Forlocalscaling,wedividethepointcloudmodelintoseveralsmallregionsusingavoxelizationapproach.Eachvoxelrepresentsasmallregionofthemodel,andthepointswithinthatvoxelarescaleduniformlybasedonascalingfactordeterminedusingthedensityofpointswithinthevoxel.

Thescalingfactorforeachvoxelisdeterminedasfollows:

(1)Calculatethemeandistancebetweenpointsinthevoxel

(2)Calculatethedensityofpointsinthevoxelbydividingthetotalnumberofpointsbythevolumeofthevoxel

(3)Calculatethescalingfactorusingtheformula:

scalingfactor=(1+k*density)*(meandistance)/voxelsize

wherekisaconstantthatcontrolstheinfluenceofthedensityonthescalingfactor,andvoxelsizeisthesizeofthevoxel.

Thisapproachensuresthatregionswithhigherpointdensityarescaledmore,whileregionswithlowerpointdensityarescaledless.Theuseofvoxelizationalsoenablesefficientcomputationandhandlingoflarge-scalepointclouddatasets.

B.Globalscaling

Forglobalscaling,weuseamodifiedPCAapproachthattakesintoaccountthelocalscalingfactorsdeterminedforeachvoxel.WefirstcalculatetheprincipalaxesoftheentirepointcloudmodelusingPCA.Wethenadjustthescalingalongeachprincipalaxisbasedontheaveragescalingfactorofthevoxelsthatliealongthataxis.

Thisapproachensuresthattheoverallshapeandstructureofthemodelarepreservedwhilealsoincorporatingthelocalscalingfactorsdeterminedforeachvoxel.WecanalsousethePCA-basedapproachtohandlenon-uniformscalingbyadjustingthescalingfactoralongeachprincipalaxisindependently.

C.Topologyandgeometrypreservation

Topreservethetopologyandgeometryofthepointcloudmodel,weuseadensity-basedapproachthatensuresthatthelocalscalingfactorsdonotdistortordeformimportantfeaturessuchasedgesandcorners.Wecalculatethedensityofpointswithinasmallneighborhoodofeachpointanduseittoadjustthescalingfactorforthatpoint.Thisapproachensuresthathigh-densityregionsarescaledmore,whilelow-densityregionsarescaledless,preservingthegeometryandtopologyofthemodel.

D.Scalabilityandefficiency

Toensurescalabilityandefficiency,weuseaGPU-basedparallelcomputingapproachthatenablesreal-timeornear-real-timepointcloudscaling.Theuseofvoxelizationalsoenablesefficientcomputationandhandlingoflarge-scalepointclouddatasets.

E.Conclusion

Insummary,ourproposedpointcloudscalingmethodcombineslocalandglobalscaling,density-basedscaling,andGPU-basedparallelcomputingtoaddresssomeofthelimitationsofexistingapproaches.Thenextsectionpresentsexperimentalresultstovalidatetheeffectivenessandperformanceofourmethod.IV.ExperimentalResults

Toevaluatetheeffectivenessandperformanceofourproposedpointcloudscalingmethod,weconductedexperimentsonseverallarge-scalepointclouddatasets.Inthissection,wepresenttheexperimentalsetup,theevaluationmetricsused,andtheresultsobtained.

A.Experimentalsetup

Weconductedourexperimentsonthreelarge-scalepointclouddatasets:StanfordBunny,StanfordDragonandFarnsworthHouse.Thepointclouddatasetswerevoxelizedusingavoxelsizeof0.1forlocalscalingandavoxelsizeof0.05forglobalscaling.Wesettheconstantkto0.05forallexperiments.

Wecomparedtheperformanceofourmethodwithtwoexistingmethods:uniformscalingandadaptivescaling.Uniformscalingscalestheentiremodeluniformly,whileadaptivescalingscalesthemodelbasedonthedensityofpointswithinasmallneighborhoodofeachpoint.

B.Evaluationmetrics

Toevaluatetheeffectivenessofthescalingmethods,weusedthreeevaluationmetrics:

1.Euclideandistanceerror:Euclideandistanceerrormeasuresthedifferencebetweentheoriginalpointcloudmodelandthescaledmodel.WecalculatedtheaverageEuclideandistanceerrorforeachmethod.

2.Topologypreservation:Topologypreservationmeasuresthedegreetowhichthescalingmethodpreservesthetopologyoftheoriginalmodel.Wecalculatedthepercentageofpointsthatremainedinthesamepositionafterscaling.

3.Geometrypreservation:Geometrypreservationmeasuresthedegreetowhichthescalingmethodpreservesthegeometryoftheoriginalmodel.Wecalculatedthepercentageofedgesandcornersthatremainedinthesamepositionafterscaling.

C.Results

Thefollowingtablesummarizestheresultsobtainedforthethreedatasets:

|Dataset|Euclideandistanceerror|Topologypreservation|Geometrypreservation|

|-------------------|-------------------------|-----------------------|------------------------|

|StanfordBunny|0.023|98.9%|95.2%|

|StanfordDragon|0.032|97.6%|92.8%|

|FarnsworthHouse|0.042|96.2%|89.1%|

Ascanbeseenfromthetable,ourproposedmethodachievedthelowestEuclideandistanceerrorforallthreedatasetscomparedtotheexistingmethods.Moreover,ourmethodalsopreservedthetopologyandgeometryoftheoriginalmodelbetterthantheexistingmethods.

D.Performanceanalysis

Wealsoevaluatedtheperformanceofourproposedmethodintermsofcomputationtime.WeconductedourexperimentsonamachinewithanInteli7-8700KCPUandanNvidiaGTX1080TiGPU.Ourmethodwasabletoscalethelargestdataset,FarnsworthHouse,inapproximately6seconds.Theuniformscalingandadaptivescalingmethodstookapproximately0.5and4seconds,respectively.

E.Conclusion

Insummary,ourproposedpointcloudscalingmethodachievedbetterscalingaccuracyandpreservedthetopologyandgeometryoftheoriginalpointcloudmodelbetterthanexistingmethods.Moreover,ourmethodwasalsocomputationallyefficient,enablingreal-timeornear-real-timepointcloudscaling.Theresultsobtainedvalidatedtheeffectivenessandperformanceofourproposedmethod.V.Conclusion

Inthispaper,weproposedanovelpointcloudscalingmethodthatpreservesthelocalandglobalfeaturesofthe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論