安徽省宿州埇橋區(qū)七校聯(lián)考2022-2023學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
安徽省宿州埇橋區(qū)七校聯(lián)考2022-2023學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
安徽省宿州埇橋區(qū)七校聯(lián)考2022-2023學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
安徽省宿州埇橋區(qū)七校聯(lián)考2022-2023學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
安徽省宿州埇橋區(qū)七校聯(lián)考2022-2023學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,DE是線段AB的中垂線,,,,則點(diǎn)A到BC的距離是A.4 B. C.5 D.62.若分式的值為零,則x的值是()A.1 B. C. D.23.下列式子中,與互為有理化因式的是()A. B. C. D.4.已知關(guān)于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.55.如圖是由若干個小正方體組成的幾何體從上面看到的圖形,小正方形中的數(shù)字表示該位置小正方體的個數(shù),這個幾何體從正面看到的圖形是()A. B. C. D.6.如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長為()A. B. C. D.7.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點(diǎn)O都落在直線MN上,直線MN∥AB,則點(diǎn)O是△ABC的()A.外心 B.內(nèi)心 C.三條中線的交點(diǎn) D.三條高的交點(diǎn)8.如圖,點(diǎn)D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.9.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.8410.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知長方體的三條棱AB、BC、BD分別為4,5,2,螞蟻從A點(diǎn)出發(fā)沿長方體的表面爬行到M的最短路程的平方是_____.12.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進(jìn)了20米,那么這個物體在水平方向上前進(jìn)了_____米.13.如圖,直線l1∥l2,則∠1+∠2=____.14.我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問題中葛藤的最短長度是尺.

15.如果實數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.16.計算=_____.17.不等式組的解集為____.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線與x軸相交于A、B兩點(diǎn),與y軸的交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)為(﹣3,0),點(diǎn)C的坐標(biāo)為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點(diǎn)P在拋物線上,且S△POC=4S△BOC,求點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)Q是線段AC上的動點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.19.(5分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動,同時動點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動,運(yùn)動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當(dāng)時,求△PCQ的面積;(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;(3)當(dāng)點(diǎn)Q在AB上運(yùn)動時,⊙O與Rt△ABC的一邊相切,求t的值.20.(8分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點(diǎn)后一位,參考數(shù)據(jù):).21.(10分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點(diǎn)E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點(diǎn)O,若AC=AB=3,cosB=,求線段CE的長.22.(10分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機(jī)地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進(jìn)10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.23.(12分)在△ABC中,,以邊AB上一點(diǎn)O為圓心,OA為半徑的圈與BC相切于點(diǎn)D,分別交AB,AC于點(diǎn)E,F(xiàn)如圖①,連接AD,若,求∠B的大小;如圖②,若點(diǎn)F為的中點(diǎn),的半徑為2,求AB的長.24.(14分)問題提出(1)如圖1,正方形ABCD的對角線交于點(diǎn)O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動點(diǎn),求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認(rèn)為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

作于利用直角三角形30度角的性質(zhì)即可解決問題.【詳解】解:作于H.

垂直平分線段AB,

,

,

,

,

,,

,

故選A.【點(diǎn)睛】本題考查線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.2、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.3、B【解析】

直接利用有理化因式的定義分析得出答案.【詳解】∵()(,)=12﹣2,=10,∴與互為有理化因式的是:,故選B.【點(diǎn)睛】本題考查了有理化因式,如果兩個含有二次根式的非零代數(shù)式相乘,它們的積不含有二次根式,就說這兩個非零代數(shù)式互為有理化因式.單項二次根式的有理化因式是它本身或者本身的相反數(shù);其他代數(shù)式的有理化因式可用平方差公式來進(jìn)行分步確定.4、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.5、C【解析】

先根據(jù)俯視圖判斷出幾何體的形狀,再根據(jù)主視圖是從正面看畫出圖形即可.【詳解】解:由俯視圖可知,幾何體共有兩排,前面一排從左到右分別是1個和2個小正方體搭成兩個長方體,

后面一排分別有2個、3個、1個小正方體搭成三個長方體,

并且這兩排右齊,故從正面看到的視圖為:.

故選:C.【點(diǎn)睛】本題考查幾何體三視圖,熟記三視圖的概念并判斷出物體的排列方式是解題的關(guān)鍵.6、B【解析】

連接BF,由折疊可知AE垂直平分BF,根據(jù)勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)、矩形的性質(zhì)及勾股定理的應(yīng)用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.7、B【解析】

利用平行線間的距離相等,可知點(diǎn)到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點(diǎn)作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點(diǎn)作于,作于E,作于.由題意可知:,,,∴,∴圖中的點(diǎn)是三角形三個內(nèi)角的平分線的交點(diǎn),點(diǎn)是的內(nèi)心,故選B.【點(diǎn)睛】本題考查平行線間的距離,角平分線定理,三角形的內(nèi)心,解題的關(guān)鍵是判斷出.8、C【解析】

由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.【詳解】∵∠A是公共角,∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;當(dāng)AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.9、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.10、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.二、填空題(共7小題,每小題3分,滿分21分)11、61【解析】分析:要求長方體中兩點(diǎn)之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點(diǎn)之間線段最短解答,注意此題展開圖后螞蟻的爬行路線有兩種,分別求出,選取最短的路程.詳解:如圖①:AM2=AB2+BM2=16+(5+2)2=65;如圖②:AM2=AC2+CM2=92+4=85;如圖:AM2=52+(4+2)2=61.∴螞蟻從A點(diǎn)出發(fā)沿長方體的表面爬行到M的最短路程的平方是:61.故答案為:61.點(diǎn)睛:此題主要考查了平面展開圖,求最短路徑,解決此類題目的關(guān)鍵是把長方體的側(cè)面展開“化立體為平面”,用勾股定理解決.12、1.【解析】

直接根據(jù)題意得出直角邊的比值,即可表示出各邊長進(jìn)而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設(shè)AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進(jìn)了1m.故答案為:1.【點(diǎn)睛】此題主要考查坡度的運(yùn)用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關(guān)系是.13、30°【解析】

分別過A、B作l1的平行線AC和BD,則可知AC∥BD∥l1∥l2,再利用平行線的性質(zhì)求得答案.【詳解】如圖,分別過A、B作l1的平行線AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案為30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和判定,掌握平行線的性質(zhì)和判定是解題的關(guān)鍵,即①兩直線平行?同位角相等,②兩直線平行?內(nèi)錯角相等,③兩直線平行?同旁內(nèi)角互補(bǔ).14、1.【解析】試題分析:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題,根據(jù)勾股定理可求出葛藤長為=1(尺).故答案為1.考點(diǎn):平面展開最短路徑問題15、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當(dāng)x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點(diǎn)睛:此題考查了分式的化簡求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.16、0【解析】分析:先計算乘方、零指數(shù)冪,再計算加減可得結(jié)果.詳解:1-1=0故答案為0.點(diǎn)睛:零指數(shù)冪成立的條件是底數(shù)不為0.17、x>1【解析】

分別解出兩不等式的解集再求其公共解.【詳解】由①得:x>1

由②得:x>∴不等式組的解集是x>1.【點(diǎn)睛】求不等式的解集須遵循以下原則:同大取較大,同小取較?。〈蟠笮≈虚g找,大大小小解不了.三、解答題(共7小題,滿分69分)18、(1)y=x2+2x﹣3;(2)點(diǎn)P的坐標(biāo)為(2,21)或(﹣2,5);(3).【解析】

(1)先根據(jù)點(diǎn)A坐標(biāo)及對稱軸得出點(diǎn)B坐標(biāo),再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設(shè)點(diǎn)P的坐標(biāo)為(a,a2+2a﹣3),則點(diǎn)P到OC的距離為|a|.然后依據(jù)S△POC=2S△BOC列出關(guān)于a的方程,從而可求得a的值,于是可求得點(diǎn)P的坐標(biāo);(3)先求得直線AC的解析式,設(shè)點(diǎn)D的坐標(biāo)為(x,x2+2x﹣3),則點(diǎn)Q的坐標(biāo)為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關(guān)系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點(diǎn)B的坐標(biāo)為(1,0),設(shè)拋物線解析式為y=a(x+3)(x﹣1),將點(diǎn)C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設(shè)點(diǎn)P的坐標(biāo)為(a,a2+2a﹣3),則點(diǎn)P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當(dāng)a=2時,點(diǎn)P的坐標(biāo)為(2,21);當(dāng)a=﹣2時,點(diǎn)P的坐標(biāo)為(﹣2,5).∴點(diǎn)P的坐標(biāo)為(2,21)或(﹣2,5).(3)如圖所示:設(shè)AC的解析式為y=kx﹣3,將點(diǎn)A的坐標(biāo)代入得:﹣3k﹣3=0,解得k=﹣1,∴直線AC的解析式為y=﹣x﹣3.設(shè)點(diǎn)D的坐標(biāo)為(x,x2+2x﹣3),則點(diǎn)Q的坐標(biāo)為(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴當(dāng)x=﹣時,QD有最大值,QD的最大值為.【點(diǎn)睛】本題主要考查了二次函數(shù)綜合題,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)和應(yīng)用.19、(1);(2)①;②;(3)t的值為或1或.【解析】

(1)先根據(jù)t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結(jié)論;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時,②當(dāng)Q在邊AB上運(yùn)動時;分別根據(jù)勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關(guān)系式;(3)分別當(dāng)⊙O與BC相切時、當(dāng)⊙O與AB相切時,當(dāng)⊙O與AC相切時三種情況分類討論即可確定答案.【詳解】(1)當(dāng)t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當(dāng)Q在邊AB上運(yùn)動時,2<t<4如圖2,設(shè)⊙O與AB的另一個交點(diǎn)為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當(dāng)⊙O與AC相切時,如圖3,設(shè)切點(diǎn)為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當(dāng)⊙O與BC相切時,如圖4,此時PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當(dāng)⊙O與BA相切時,如圖5,此時PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【點(diǎn)睛】本題是圓的綜合題,涉及了三角函數(shù)、勾股定理、圓的面積、切線的性質(zhì)等知識,綜合性較強(qiáng),有一定的難度,以點(diǎn)P和Q運(yùn)動為主線,畫出對應(yīng)的圖形是關(guān)鍵,注意數(shù)形結(jié)合的思想.20、5.7米.【解析】試題分析:由題意,過點(diǎn)A作AH⊥CD于H.在Rt△ACH中,可求出CH,進(jìn)而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.試題解析:解:如答圖,過點(diǎn)A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH?tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉線CE的長約為5.7米.考點(diǎn):1.解直角三角形的應(yīng)用(仰角俯角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.矩形的判定和性質(zhì).21、(1)證明見解析;(2)4.【解析】

(1)已知四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形ACDE是平行四邊形;(2)連接EC,易證△BEC是直角三角形,解直角三角形即可解決問題.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四邊形ACDE是平行四邊形.(2)如圖,連接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)和判定、直角三角形的判定、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考常考題型.22、x=15,y=1【解析】

根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關(guān)系式;

(2)若往盒中再放進(jìn)10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變?yōu)?,結(jié)合(1)的條件,可得,解可得x=15,y=1.【詳解】依題意得,,化簡得,,解得,.,檢驗當(dāng)x=15,y=1時,,,∴x=15,y=1是原方程的解,經(jīng)檢驗,符合題意.答:x=15,y=1.【點(diǎn)睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.23、(1)∠B=40°;(2)AB=6.【解析】

(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD

,即可求得∠CAD=∠ADO

,繼而求得答案;

(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD

,由點(diǎn)F為弧AD的中點(diǎn),易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點(diǎn)D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點(diǎn)F為弧AD的中點(diǎn),∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),弧弦圓心角的關(guān)系,等邊三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì).熟練

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論