數(shù)學(xué)九年級上冊25.2 第1課時 運用直接列舉或列表法求概率_第1頁
數(shù)學(xué)九年級上冊25.2 第1課時 運用直接列舉或列表法求概率_第2頁
數(shù)學(xué)九年級上冊25.2 第1課時 運用直接列舉或列表法求概率_第3頁
數(shù)學(xué)九年級上冊25.2 第1課時 運用直接列舉或列表法求概率_第4頁
數(shù)學(xué)九年級上冊25.2 第1課時 運用直接列舉或列表法求概率_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

優(yōu)秀領(lǐng)先飛翔夢想成人成才優(yōu)秀領(lǐng)先飛翔夢想成人成才第3頁共4頁第二十五章概率初步25.2用列舉法求概率第1課時運用直接列舉或列表法求概率學(xué)習(xí)目標:1.知道什么時候采用“直接列舉法”和“列表法”.2.會正確“列表”表示出所有可能出現(xiàn)的結(jié)果.3.知道如何利用“列表法”求隨機事件的概率.重點:知道如何利用“列表法”求隨機事件的概率.難點:會正確“列表”表示出所有可能出現(xiàn)的結(jié)果.自主學(xué)習(xí)自主學(xué)習(xí)一、知識鏈接1.等可能事件的兩個前提條件是:一次試驗中,可能出現(xiàn)的結(jié)果為個,各種結(jié)果發(fā)生的可能性.2.(1)擲一枚硬幣,正面向上的概率為;(2)袋子中裝有5個紅球,3個綠球,這些球除顏色外都相同,從袋子中隨機摸出一個球,它是紅色的概率是;(3)擲一個骰子,觀察向上一面的點數(shù),點數(shù)大于4的概率為.課堂探究課堂探究二、要點探究探究點1:用直接列舉法求概率探索交流:同時擲兩枚硬幣,試求下列事件的概率:(1)兩枚兩面一樣;(2)一枚硬幣正面朝上,一枚硬幣反面朝上;解:“擲兩枚硬幣”所有結(jié)果有.兩枚兩面一樣的概率是;一枚硬幣正面朝上,一枚硬幣反面朝上的概率是.要點歸納:像上面這樣把事件可能出現(xiàn)的結(jié)果一一列出的方法叫直接列舉法.直接列舉法比較適合用于最多涉及兩個試驗因素或分兩步進行的試驗,且事件總結(jié)果的種數(shù)比較少的等可能性事件.試一試:如果從長度分別為2、4、6、7的四條線段中隨機抽取三條線段,求抽取的三條線段能構(gòu)成三角形的概率.探究點2:用列表法求概率問題同時擲兩枚硬幣,試求下列事件的概率,并想一想還有別的方法求下列事件的概率嗎?(1)兩枚兩面一樣;(2)一枚硬幣正面朝上,一枚硬幣反面朝上;(1)填表:第二枚第一枚(2)P(兩面都一樣)=________;P(兩面不一樣)=________.典例精析例1同時擲兩個質(zhì)地均勻的骰子,計算下列事件的概率:(1)兩個骰子的點數(shù)相同;(2)兩個骰子點數(shù)的和是9;(3)至少有一個骰子的點數(shù)為2.方法總結(jié):列表法對于列舉涉及兩個因素或分兩步進行的試驗結(jié)果是一種有效的方法.例2一只不透明的袋子中裝有1個白球和2個紅球,這些球除顏色外都相同,攪勻后從中任意摸出一個球,記錄下顏色后放回袋中并攪勻,再從中任意摸出一個球,兩次都摸出紅球的概率是多少?變式題:一只不透明的袋子中裝有1個白球和2個紅球,這些球除顏色外都相同,攪勻后從中任意摸出一個球,記錄下顏色后不再放回袋中,再從中任意摸出一個球,兩次都摸出紅球的概率是多少?歸納總結(jié):用列表法求概率適用于事件中涉及兩個因素,并且可能出現(xiàn)的結(jié)果數(shù)目較多的概率問題.在運用列表法求概率時,應(yīng)注意各種結(jié)果出現(xiàn)的可能性相等,要注意列表的順序,并不重不漏地列出所有可能的結(jié)果.三、課堂小結(jié)列舉法關(guān)鍵在于正確列舉出試驗結(jié)果的各種可能性.直接列舉法直接列出所有可能出現(xiàn)的結(jié)果.列表法前提條件:確保試驗中每種結(jié)果出現(xiàn)的可能性大小相等.適用對象:兩個試驗因素或分兩步進行的試驗.基本步驟:①列表;②確定m、n值代入概率公式計算.當堂檢測當堂檢測1.小明與小紅玩一次“石頭、剪刀、布”游戲,則小明贏的概率是()A.B.C.D.2.某次考試中,每道單項選擇題一般有4個選項,某同學(xué)有兩道題不會做,于是他以“抓鬮”的方式選定其中一個答案,則該同學(xué)的這兩道題全對的概率是()A.B.C.D.3.如果有兩組牌,它們的牌面數(shù)字分別是1,2,3,那么從每組牌中各摸出一張牌.(1)摸出兩張牌的數(shù)字之和為4的概念為多少?(2)摸出為兩張牌的數(shù)字相等的概率為多少?在6張卡片上分別寫有1-6的整數(shù),隨機地抽取一張后放回,再隨機地抽取一張,那么第一次取出的數(shù)字能夠整除第二次取出的數(shù)字的概率是多少?變式在6張卡片上分別寫有1-6的整數(shù),隨機地抽取一張后不放回,再隨機地抽取一張,那么第一次取出的數(shù)字能夠整除第二次取出的數(shù)字的概率是多少?參考答案自主學(xué)習(xí)知識鏈接1.有限相同2.(1)(2)(3)課堂探究二、要點探究探究點1:用直接列舉法求概率探索交流:(正,正),(正,反),(反,正),(反,反)試一試:解:從長度分別為2、4、6、7的四條線段中隨機抽取三條線段,它們?yōu)?,4,6;2,4,7;2,6,7;4,6,7,共有4種等可能的結(jié)果,其中三條線段能構(gòu)成三角形的有2種結(jié)果,所以三條線段能構(gòu)成三角形的概率為探究點2:用列表法求概率問題(1)填表如下:第二枚第一枚正反正(正,正)(反,正)反(正,反)(反,反)(2)典例精析例1解:把兩個骰子分別標記為第1個和第2個,列表如下:由列表得,同時擲兩枚骰子,可能出現(xiàn)的結(jié)果有36個,它們出現(xiàn)的可能性相等.滿足兩枚骰子的點數(shù)相同(記為事件A)的結(jié)果有6個,則P(A)=滿足兩枚骰子的點數(shù)之和是9(記為事件B)的結(jié)果有4個,則P(B)=滿足至少有一枚骰子的點數(shù)為2(記為事件C)的結(jié)果有11個,則P(C)=例2解:利用表格列出所有可能的結(jié)果:由表格可知,一共有9種等可能的結(jié)果,其中2次摸出紅球的結(jié)果有4種,則P(2次摸出紅球)=變式題:利用表格列出所有等可能的結(jié)果:由表格可知,一共有6種等可能的結(jié)果,其中2次摸出紅球的結(jié)果有2種,則P(2次摸出紅球)=當堂檢測1.B2.B3.解:列表如下:由表格可知,一共有9種等可能的結(jié)果,(1)數(shù)字之和為4的結(jié)果有3種,則P(數(shù)字之和為4)=(2)數(shù)字相等的結(jié)果有3種,則P(數(shù)字相等)=4.解:列表如下:由列表得,兩次抽取卡片后,可能出現(xiàn)的結(jié)果有36個,它們出現(xiàn)的可能性相等.滿

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論