版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知一次函數(shù)y=(k﹣2)x+k不經過第三象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<22.如圖,在中,D、E分別在邊AB、AC上,,交AB于F,那么下列比例式中正確的是A. B. C. D.3.如圖,在數(shù)軸上有點O,A,B,C對應的數(shù)分別是0,a,b,c,AO=2,OB=1,BC=2,則下列結論正確的是()A. B. C. D.4.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃5.下列圖形中,屬于中心對稱圖形的是()A. B.C. D.6.如圖所示的幾何體的主視圖正確的是()A. B. C. D.7.如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②△OAE∽△OPA;③當正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結論的個數(shù)是()A.0 B.1 C.2 D.38.已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或129.若二次函數(shù)y=ax2+bx+c的x與y的部分對應值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)10.下列圖形中,不是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當△為直角三角形時,BE的長為.12.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.13.__.14.豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關系式為h=﹣2t2+mt+,若小球經過秒落地,則小球在上拋的過程中,第____秒時離地面最高.15.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.16.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為.三、解答題(共8題,共72分)17.(8分)為進一步打造“宜居重慶”,某區(qū)擬在新竣工的矩形廣場的內部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規(guī)作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結論,保留作圖痕跡,必須用鉛筆作圖)18.(8分)如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AB相切于點P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.19.(8分)如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當AB=5cm,AC=12cm時,求線段PC的長.20.(8分)如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉90°,得到△A1B1C1.求點C1在旋轉過程中所經過的路徑長.21.(8分)如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.(1)求證:FD=CD;(2)若AE=8,tan∠E=3422.(10分)(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?23.(12分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?24.小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內,小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據(jù)上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
直線不經過第三象限,則經過第二、四象限或第一、二、四象限,當經過第二、四象限時,函數(shù)為正比例函數(shù),k=0當經過第一、二、四象限時,,解得0<k<2,綜上所述,0≤k<2。故選D2、C【解析】
根據(jù)平行線分線段成比例定理和相似三角形的性質找準線段的對應關系,對各選項分析判斷.【詳解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本選項錯誤;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤;C、∵EF∥CD,DE∥BC,∴,,∴,故本選項正確;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤.故選C.【點睛】本題考查了平行線分線段成比例的運用及平行于三角形一邊的直線截其它兩邊,所得的新三角形與原三角形相似的定理的運用,在解答時尋找對應線段是關健.3、C【解析】
根據(jù)AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,進行判斷即可解答.【詳解】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|c|,ab<0,,,故選:C.【點睛】此題考查有理數(shù)的大小比較以及絕對值,解題的關鍵結合數(shù)軸求解.4、B【解析】
求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.
故選B.5、B【解析】
A、將此圖形繞任意點旋轉180度都不能與原圖重合,所以這個圖形不是中心對稱圖形.【詳解】A、將此圖形繞任意點旋轉180度都不能與原圖重合,所以這個圖形不是中心對稱圖形;B、將此圖形繞中心點旋轉180度與原圖重合,所以這個圖形是中心對稱圖形;C、將此圖形繞任意點旋轉180度都不能與原圖重合,所以這個圖形不是中心對稱圖形;D、將此圖形繞任意點旋轉180度都不能與原圖重合,所以這個圖形不是中心對稱圖形.故選B.【點睛】本題考查了軸對稱與中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.6、D【解析】
主視圖是從前向后看,即可得圖像.【詳解】主視圖是一個矩形和一個三角形構成.故選D.7、C【解析】
由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質得到∠P=∠Q,根據(jù)余角的性質得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無法證明,故錯誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點睛】考查正方形的性質,三角形全等的判定與性質,勾股定理,銳角三角函數(shù)等,綜合性比較強,對學生要求較高.8、C【解析】試題分析:①4是腰長時,三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點:4.等腰三角形的性質;4.三角形三邊關系;4.分類討論.9、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數(shù)的性質,利用條件求得二次函數(shù)的解析式是解題的關鍵.10、A【解析】
觀察四個選項圖形,根據(jù)軸對稱圖形的概念即可得出結論.【詳解】根據(jù)軸對稱圖形的概念,可知:選項A中的圖形不是軸對稱圖形.故選A.【點睛】此題主要考查了軸對稱圖形,軸對稱圖形的關鍵是尋找對稱軸,對稱軸可使圖形兩部分折疊后重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、1或.【解析】
當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
設BE=x,則EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,∴BE=AB=1.
綜上所述,BE的長為或1.
故答案為:或1.12、.【解析】
由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.13、.【解析】
根據(jù)去括號法則和合并同類二次根式法則計算即可.【詳解】解:原式故答案為:【點睛】此題考查的是二次根式的加減運算,掌握去括號法則和合并同類二次根式法則是解決此題的關鍵.14、.【解析】
首先根據(jù)題意得出m的值,進而求出t=﹣的值即可求得答案.【詳解】∵豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關系式為h=﹣2t2+mt+,小球經過秒落地,∴t=時,h=0,則0=﹣2×()2+m+,解得:m=,當t=﹣=﹣時,h最大,故答案為:.【點睛】本題考查了二次函數(shù)的應用,正確得出m的值是解題關鍵.15、【解析】
設AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關系求得,由二次函數(shù)的性質求得S△ABC取得最大值.【詳解】設AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關系有,解得,故當時,取得最大值,
故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應用,考查了二次函數(shù)的性質,考查了計算能力,當涉及最值問題時,可考慮用函數(shù)的單調性和定義域等問題,屬于中檔題.16、(10,3)【解析】
根據(jù)折疊的性質得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標.【詳解】∵四邊形AOCD為矩形,D的坐標為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標為(10,3).三、解答題(共8題,共72分)17、解:作AB的垂直平分線,以點C為圓心,以AB的一半為半徑畫弧交AB的垂直平分線于點M即可.【解析】
易得M在AB的垂直平分線上,且到C的距離等于AB的一半.18、(1)證明見解析;(2).【解析】試題分析:(1)連接OP,首先證明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;
(2)作PH⊥AB于H.首先證明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解決問題.試題解析:(1)連接OP,∵AC是⊙O的切線,∴OP⊥AC,∴∠APO=∠ACB=90°,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC;(2)作PH⊥AB于H.則∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP,PB=PB,∴△PBC≌△PBH,∴PC=PH=1,BC=BH,在Rt△APH中,AH=,在Rt△ACB中,AC2+BC2=AB2∴(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得.19、(1)證明見解析;(2)證明見解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點睛】本題考查了切線的判定、相似三角形的判定與性質等,熟練掌握切線的判定方法、相似三角形的判定與性質定理是解題的關鍵.20、(1)①見解析;②見解析;(1)1π.【解析】
(1)①利用點平移的坐標規(guī)律,分別畫出點A、B、C的對應點A1、B1、C1的坐標,然后描點可得△A1B1C1;②利用網(wǎng)格特點和旋轉的性質,分別畫出點A1、B1、C1的對應點A1、B1、C1即可;(1)根據(jù)弧長公式計算.【詳解】(1)①如圖,△A1B1C1為所作;②如圖,△A1B1C1為所作;(1)點C1在旋轉過程中所經過的路徑長=【點睛】本題考查了作圖﹣旋轉變換:根據(jù)旋轉的性質可知,對應角都相等,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.也考查了平移的性質.21、(1)證明見解析;(2)256【解析】
(1)先利用切線的性質得出∠CAD+∠BAD=90°,再利用直徑所對的圓周角是直角得出∠B+∠BAD=90°,從而可證明∠B=∠EAD,進而得出∠EAD=∠CAD,進而判斷出△ADF≌△ADC,即可得出結論;(2)過點D作DG⊥AE,垂足為G.依據(jù)等腰三角形的性質可得到EG=AG=1,然后在Rt△GEG中,依據(jù)銳角三角函數(shù)的定義可得到DG的長,然后依據(jù)勾股定理可得到AD=ED=2,然后在Rt△ABD中,依據(jù)銳角三角函數(shù)的定義可求得AB的長,從而可求得⊙O的半徑的長.【詳解】(1)∵AC是⊙O的切線,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下圖所示:過點D作DG⊥AE,垂足為G.∵DE=AE,DG⊥AE,∴EG=AG=12∵tan∠E=34∴GDEG=34,即GD4∴ED=EG∵∠B=∠E,tan∠E=34∴sin∠B=ADAB=GDED=∴⊙O的半徑為256【點睛】本題考查了切線的性質,圓周角定理,圓的性質,全等三角形的判定和性質,利用等式的性質和同角的余角相等判斷角相等是解本題的關鍵.22、(1)孔明同學測試成績位90分,平時成績?yōu)?5分;(2)不可能;(3)他的測試成績應該至少為1分.【解析】試題分析:(1)分別利用孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進而得出答案;(3)首先假設平時成績?yōu)闈M分,進而得出不等式,求出測試成績的最小值.試題解析:(1)設孔明同學測試成績?yōu)閤分,平時成績?yōu)閥分,依題意得:,解之得:.答:孔明同
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廚熱入職考試試題及答案
- 研究生生理試題及答案
- 2025-2026人教版五年級語文上期末測試卷
- 肝靶向納米遞藥:慢性肝病治療新突破
- 衛(wèi)生院健康管理制度
- 衛(wèi)生院特困病房管理制度
- 社區(qū)衛(wèi)生院財務制度
- 公交車衛(wèi)生消毒管理制度
- 噴漆工藝與環(huán)保設施設備升級及自動化改造項目環(huán)評報告
- 健身館衛(wèi)生管理制度
- 2025北京西城區(qū)初一(下)期末英語試題及答案
- 2026.01.01施行的《招標人主體責任履行指引》
- DB11∕T 689-2025 既有建筑抗震加固技術規(guī)程
- 2025年湖南公務員《行政職業(yè)能力測驗》試題及答案
- 提前招生面試制勝技巧
- 2024中國類風濕關節(jié)炎診療指南課件
- 2026年中國家居行業(yè)發(fā)展展望及投資策略報告
- 陜西省西安鐵一中2026屆高一物理第一學期期末教學質量檢測試題含解析
- DB3207∕T 1046-2023 香菇菌棒生產技術規(guī)程
- 2025-2030腦機接口神經信號解碼芯片功耗降低技術路線圖報告
- 空調安裝應急預案
評論
0/150
提交評論