河南省安陽市重點高中高三模擬考試數(shù)學(xué)(文)試題_第1頁
河南省安陽市重點高中高三模擬考試數(shù)學(xué)(文)試題_第2頁
河南省安陽市重點高中高三模擬考試數(shù)學(xué)(文)試題_第3頁
河南省安陽市重點高中高三模擬考試數(shù)學(xué)(文)試題_第4頁
河南省安陽市重點高中高三模擬考試數(shù)學(xué)(文)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022屆河南省安陽市重點高中高三模擬考試數(shù)學(xué)(文)試題一、單選題1.已知集合,則(

)A. B. C. D.【答案】B【分析】求得集合,結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,又因為,所以.故選:B.2.若復(fù)數(shù)(i為虛數(shù)單位)是純虛數(shù),則實數(shù)a=A. B.-1 C.0 D.1【答案】B【詳解】試題分析:由題意,.故選B.【解析】復(fù)數(shù)的概念.3.若實數(shù)滿足則的最大值為(

)A. B. C. D.【答案】D【分析】根據(jù)不等式組作出線性規(guī)劃區(qū)域,數(shù)形結(jié)合即可求出目標(biāo)函數(shù)z的最大值.【詳解】作出不等式組滿足的平面區(qū)域,如圖所示,由圖知當(dāng)目標(biāo)函數(shù)經(jīng)過時取得最大值,即.故選:D.4.已知,若為真命題,則實數(shù)的取值范圍是(

)A. B.C. D.【答案】A【分析】由題意得的真假性后分別求解【詳解】由題意得為真命題,為真命題,,或,則,得故選:A5.已知,則(

)A. B. C. D.0【答案】D【分析】利用和(差)角公式展開,即可得到,再根據(jù)二倍角公式計算可得;【詳解】解:因為,所以,即所以,所以;故選:D6.某班舉行了一次有意思的智力競猜游戲,首先老師將三只冬奧會吉祥物冰墩墩進(jìn)行了1、2、3三個數(shù)字的標(biāo)號,然后將它們放入不透明的箱子中,甲、乙、丙三名同學(xué)分別進(jìn)行抽取,并將抽到的冰墩墩的標(biāo)號告知老師,老師根據(jù)三人抽取的號碼情況給出了三種說法:①甲抽取的是1號冰墩墩;②乙抽取的不是2號冰墩墩;③丙抽取的不是1號冰墩墩.若三種說法中只有一個說法正確,則抽取2號冰墩墩的是(

)A.甲 B.乙 C.丙 D.無法判定【答案】A【分析】由于只有一種說法正確,所以分別由①,②,③正確進(jìn)行推理可得結(jié)果【詳解】若①正確,即甲抽取的是1號冰墩墩正確,則②乙抽取的不是2號冰墩墩是錯誤的,即乙抽取是2號冰墩墩,③丙抽取的不是1號冰墩墩是錯誤的,即丙抽取的就是1號冰墩墩,出現(xiàn)矛盾,所以①錯誤,若②正確,即乙抽取的不是2號冰墩墩是正確的,那么乙抽取的是1號或3號,則①甲抽取的是1號冰墩墩是錯誤的,即甲抽取的是2號或3號,③丙抽取的不是1號冰墩墩是錯誤的,即丙抽取的就是1號冰墩墩,由此可得乙抽取3號,甲抽取2號,丙抽取1號,若③正確,即丙抽取的不是1號冰墩墩是正確的,那么丙抽取的是2號或3號,則①甲抽取的是1號冰墩墩是錯誤的,即甲抽取的是2號或3號,則②乙抽取的不是2號冰墩墩是錯誤的,即乙抽取是2號冰墩墩,那么1號就由甲或丙抽取,出現(xiàn)矛盾,所以③錯誤,綜上,②是正確,則有乙抽取3號,甲抽取2號,丙抽取1號,故選:A7.已知正實數(shù)x,y,z滿足,則(

)A. B. C. D.【答案】C【分析】根據(jù)選項可考慮令,再分別表示出再判斷即可【詳解】令,則,故,故故選:C8.已知、分別為雙曲線的左、右焦點,,是軸正半軸上一點,線段交雙曲線左支于點,若,且的內(nèi)切圓半徑為,則雙曲線的離心率是(

)A. B. C. D.【答案】A【分析】設(shè)的內(nèi)切圓分別切線段、、于點、、,連接、、,利用切線長定理可得出,結(jié)合雙曲線的定義可求得的值,再由可求得該雙曲線的離心率的值.【詳解】設(shè)的內(nèi)切圓分別切線段、、于點、、,連接、、,如下圖所示:由切線長定理可知,,,,因為,,,,則四邊形是邊長為的正方形,則,因為且為的中點,則,因為,即,又因為,因此,該雙曲線的離心率為.故選:A.9.若,則在,,,…,中,值為零的個數(shù)是(

)A.202 B.144 C.404 D.288【答案】C【分析】由于一,二象限角的正弦值為正,三,四象限角的正弦值為負(fù)值,故,,,,,,,,可得到,,而,從而可得到周期性的規(guī)律,從而得到答案.【詳解】解:,,,,,,,,,,,,,,而,,又,,,所以是以為周期,且在一個周期內(nèi)有兩個為零,因為,所以值為零的個數(shù)是;故選:C10.已知為正實數(shù),且,則的最小值為(

)A. B. C. D.【答案】B【分析】根據(jù)題意,化簡得到,結(jié)合基本不等式,即可求解.【詳解】由題意,可得,則有,解得,當(dāng)且僅當(dāng),取到最小值.故選:B.11.已知函數(shù),則關(guān)于的方程有個不同實數(shù)解,則實數(shù)滿足(

)A.且 B.且C.且 D.且【答案】C【分析】令,利用換元法可得,由一元二次方程的定義知該方程至多有兩個實根、,作出函數(shù)的圖象,結(jié)合題意和圖象可得、,進(jìn)而得出結(jié)果.【詳解】令,作出函數(shù)的圖象如下圖所示:由于方程至多兩個實根,設(shè)為和,由圖象可知,直線與函數(shù)圖象的交點個數(shù)可能為0?2?3?4,由于關(guān)于x的方程有7個不同實數(shù)解,則關(guān)于u的二次方程的一根為,則,則方程的另一根為,直線與函數(shù)圖象的交點個數(shù)必為4,則,解得.所以且.故選:C.12.已知正三棱錐和正四棱錐的所有棱長均為2,如圖將三棱錐的一個面和正四棱錐的一個側(cè)面重合在一起,得到一個新幾何體,則下列關(guān)于該新幾何體說法不正確的是(

)A. B.C.新幾何體為三棱柱 D.正四棱錐的內(nèi)切球半徑為【答案】D【分析】取的中點,的中點,連、、、,可證平面,平面,從而平面與平面重合,再證明四邊形為平行四邊形,可得,可得;根據(jù),可得;根據(jù)棱柱的定義可得新幾何體為三棱柱;利用體積關(guān)系可求出內(nèi)切球的半徑.【詳解】取的中點,的中點,連、、、,如圖:因為正三棱錐和正四棱錐的所有棱長都為,所以,,,又,所以平面,因為,所以,因為,所以平面,所以平面與平面重合,因為,,所以四邊形為平行四邊形,所以,又,所以,故A正確;因為,所以,故B正確;因為,,所以四邊形為平行四邊形,同理得四邊形也為平行四邊形,所以,因為平面,平面,所以平面,同理得平面,因為,所以平面平面,又,根據(jù)棱柱的定義可得該新幾何體為三棱柱,故C正確;設(shè)正四棱錐的內(nèi)切球半徑為,因為正四棱錐的高為,由得,故D不正確.故選:D.二、填空題13.已知向量,均為單位向量,,則_______.【答案】【分析】設(shè)向量,的夾角為,根據(jù)兩邊平方可得,再平方計算求解即可【詳解】設(shè)向量,的夾角為,因為,故,故,故,故故答案為:14.已知點為拋物線的焦點,直線經(jīng)過點且交拋物線于兩點,交軸于點,若,則___________.【答案】2【分析】由題意知點B在AM之間,設(shè)直線l的傾斜角為,根據(jù),可得,利用弦長公式列式,求得答案.【詳解】由題意知點B在AM之間,設(shè)直線l的傾斜角為,如圖即,由于則,而,即,由可得,解得或(舍去),故,故答案為:215.將一個棱長為的正四面體放人一個正方體的玻璃容器,若要求該正四面體能在正方體容器中自由旋轉(zhuǎn),則該正方體容器的棱長的最小值為___________.【答案】2【分析】根據(jù)題意,得到正方體最小時,其內(nèi)切球是該正四面體的外接球,求得正四面體的外接球的半徑,進(jìn)而求得正方體的棱長.【詳解】由題若正四面體能在正方體容器中自由旋轉(zhuǎn),則當(dāng)正方體最小時,其內(nèi)切球是該正四面體的外接球,又由棱長為的正四面體的外接球半徑,此時正方體的棱長為.故答案為:.16.在中,角的對邊分別為,若,且的面積為,則___________.【答案】【分析】根據(jù)和正弦定理可求A.根據(jù)余弦定理和三角形面積公式即可求出b.【詳解】∵,∴由正弦定理得,即,即,∵C是三角形內(nèi)角,∴,∴,,∴,∵,∴,∴,即.又由余弦定理得,且,解得或(舍).故答案為:﹒三、解答題17.已知數(shù)列的前項和為.設(shè).(1)求;(2)求數(shù)列的前項和.【答案】(1)(2)【分析】(1)由,化簡得到,得出是以3為首項,3為公比的等比數(shù)列,即可求得;(2)由(1)知,,求得,得到,進(jìn)而求得數(shù)列的前項和.【詳解】(1)解:由,可得,所以,又由,所以是以3為首項,3為公比的等比數(shù)列,所以,所以;(2)解:由(1)知,,當(dāng)時,,當(dāng)時,,所以,所以,當(dāng)時,;當(dāng)時,,當(dāng)時,符合上式,所以數(shù)列的前項和.18.共享汽車,是指許多人合用一輛車,即開車人對車輛只有使用權(quán),而沒有所有權(quán),有點類似于在租車行業(yè)里的短時間的租車.它手續(xù)簡便,打個電話或通過網(wǎng)上就可以預(yù)約訂車.某市為了了解不同年齡的人對共享汽車的使用體驗,隨機(jī)選取了100名使用共享汽車的體驗者,讓他們根據(jù)體驗效果進(jìn)行評分.(1)設(shè)消費(fèi)者的年齡為x,對共享汽車的體驗評分為y.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到y(tǒng)關(guān)于x的線性回歸方程為,且年齡x的方差為,評分y的方差為.求y與x的相關(guān)系數(shù)r,并據(jù)此判斷對共享汽車使用體驗的評分與年齡的相關(guān)性強(qiáng)弱(當(dāng)時,認(rèn)為相關(guān)性強(qiáng),否則認(rèn)為相關(guān)性弱).(2)現(xiàn)將100名消費(fèi)者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請將列聯(lián)表補(bǔ)充完整并判斷是否有99.9%的把握認(rèn)為對共享汽車的評價與年齡有關(guān).好評差評合計青年16中老年12合計44100附:回歸直線的斜率相關(guān)系數(shù)獨立性檢驗中的,其中.臨界值表:【答案】(1);對共享汽車使用體驗的評分與年齡的相關(guān)性很強(qiáng).(2)有99.9%的把握認(rèn)為對共享汽車的評價與年齡有關(guān).【分析】(1)根據(jù)方差公式求出、,結(jié)合求出,再根據(jù)相關(guān)系數(shù)公式求出相關(guān)系數(shù),可得結(jié)果;(2)求出,結(jié)合臨界值表可得結(jié)果.【詳解】(1)因為,所以,因為,所以,因為,所以,所以相關(guān)系數(shù),因為,所以可以判斷對共享汽車使用體驗的評分與年齡的相關(guān)性很強(qiáng).(2)根據(jù)題意可得列聯(lián)表如下:好評差評合計青年163248中老年401252合計5644100因為,所以有99.9%的把握認(rèn)為對共享汽車的評價與年齡有關(guān).19.如圖,在四棱錐中,點為線段的中點,為正三角形,,(1)求證:平面平面;(2)求點A到平面的距離.【答案】(1)證明見解析;(2)﹒【分析】(1)取PD的中點F,連接AF?EF,證明四邊形ABEF為平行四邊形,得,證明AF垂直平面PCD即可;(2)利用等體積法即可求點A到平面的距離.【詳解】(1)取PD的中點F,連接AF?EF,∵E?F分別為PC?PD的中點,則且,又∵,,∴且,則四邊形ABEF為平行四邊形,∴.又∵,∴,∵為正三角形,∴,∵CD∩PD=D,CD、PD平面PCD,∴平面PCD,∴平面PCD,∵平面PBC,∴平面平面PCD;(2)取AD的中點O,連接PO,∵,∴,由(1)知AF⊥CD,又CD⊥AD,AD∩AF=A,∴平面PAD,∵平面PAD,∴,∵,∴平面ABCD,,,在中,,,∴,設(shè)點A到平面PBC的距離為d,由得,解得.∴點A到平面PBC的距離為.20.已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)當(dāng)時,對任意的恒成立,求滿足條件的實數(shù)的最小整數(shù)值.【答案】(1)(2)?3【分析】(1)求出在處的導(dǎo)數(shù)值,求出,即可得出切線方程;(2)不等式化為對任意的恒成立即可,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出最大值即可得出.【詳解】(1)當(dāng)時,,,則,,所以切線方程為.(2)因為對任意的恒成立,即,當(dāng)時,對任意的恒成立,∵,,∴,只需對任意的恒成立即可.構(gòu)造函數(shù),,∵,∴,且單調(diào)遞增,∵,,∴一定存在唯一的,使得,即,,且當(dāng)時,,即;當(dāng)時,,即.所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,∴,所以b的最小整數(shù)值為?3.21.已知橢圓C:的離心率為,左、右焦點分別為,,O為坐標(biāo)原點,點P在橢圓C上,且有,(1)求橢圓C的方程;(2)設(shè)直線l不經(jīng)過P(0,1)點且與橢圓E相交于A、B兩點,若直線PA與直線PB的斜率之和為,若,垂足為M,判斷是否存在定點N,使得為定值,若存在求出點N,若不存在,說明理由.【答案】(1)(2)【分析】(1)根據(jù)離心率為可得,再在中利用余弦定理求解即可;(2)設(shè)直線l的方程為,再聯(lián)立橢圓的方程,表達(dá)出直線PA與直線PB的斜率之和為,結(jié)合韋達(dá)定理可得,進(jìn)而得到直線l過定點,從而根據(jù)確定點N【詳解】(1)因為離心率為,故,解得,又,故.在中有,,,,由余弦定理可得,化簡可得,故,橢圓C的方程為(2)當(dāng)直線l的斜率不存在時,設(shè)點,此時有,解得,此時直線l的方程為;當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,聯(lián)立化簡可得,,又直線PA與直線PB的斜率之和為,故,代入直線方程有,化簡得,代入韋達(dá)定理有,整理得,故直線過定點,當(dāng)直線l的方程為時也滿足,又,故存在的中點得為定值【點睛】本題主要考查了橢圓結(jié)合解三角形的計算問題,同時也考查了直線與橢圓聯(lián)立方程,利用韋達(dá)定理化簡求定點的問題,屬于難題22.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(t是參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(1)寫出直線l的普通方程、曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)點A為曲線C上的動點,直線過點A且與直線l的夾角為45°,設(shè)直線與直線l交于點B,求線段AB長度的取值范圍.【答案】(1)直線l的普通方程:;曲線C的標(biāo)準(zhǔn)方程:(2)【分析】(1)根據(jù)直線l的參數(shù)方程消去參數(shù)化簡即可得直線l的普通方程,根據(jù)兩角和的正弦公式,結(jié)合可得曲線C的標(biāo)準(zhǔn)方程;(2)過點A作直線l的垂線交l于,則,再根據(jù)圓C上的點到直線l的距離范圍求解即可.【詳解】(1)由直線l的參數(shù)方程兩式相加可得,即;由可得,化簡得(2)過點A作直線l的垂線交l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論