高一數(shù)學(xué)教案集合的運算模板_第1頁
高一數(shù)學(xué)教案集合的運算模板_第2頁
高一數(shù)學(xué)教案集合的運算模板_第3頁
高一數(shù)學(xué)教案集合的運算模板_第4頁
高一數(shù)學(xué)教案集合的運算模板_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第高一數(shù)學(xué)教案集合的運算模板

高一數(shù)學(xué)教案集合的運算模板1

教學(xué)目標

1.掌握等比數(shù)列前項和公式,并能運用公式解決簡單的問題.

(1)理解公式的推導(dǎo)過程,體會轉(zhuǎn)化的思想;

(2)用方程的思想認識等比數(shù)列前項和公式,利用公式知三求一;與通項公式結(jié)合知三求二;

2.通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉(zhuǎn)化的思想.

3.通過公式推導(dǎo)的教學(xué),對學(xué)生進行思維的嚴謹性的訓(xùn)練,培養(yǎng)他們實事求是的科學(xué)態(tài)度.

教學(xué)建議

教材分析

(1)知識結(jié)構(gòu)

先用錯位相減法推出等比數(shù)列前項和公式,而后運用公式解決一些問題,并將通項公式與前項和公式結(jié)合解決問題,還要用錯位相減法求一些數(shù)列的前項和.

(2)重點、難點分析

教學(xué)重點、難點是等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法.等比數(shù)列前項和公式是分情況討論的,在運用中要特別注意和兩種情況.

教學(xué)建議

(1)本節(jié)內(nèi)容分為兩課時,一節(jié)為等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項公式與前項和公式的綜合運用,另外應(yīng)補充一節(jié)數(shù)列求和問題.

(2)等比數(shù)列前項和公式的推導(dǎo)是重點內(nèi)容,引導(dǎo)學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論.

(3)等比數(shù)列前項和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣.

(4)編擬例題時要全面,不要忽略的情況.

(5)通項公式與前項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數(shù)方程難度大.

(6)補充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問題.

教學(xué)設(shè)計示例

課題:等比數(shù)列前項和的公式

教學(xué)目標

(1)通過教學(xué)使學(xué)生掌握等比數(shù)列前項和公式的推導(dǎo)過程,并能初步運用這一方法求一些數(shù)列的前項和.

(2)通過公式的推導(dǎo)過程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).

(3)通過教學(xué)進一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度.

教學(xué)重點,難點

教學(xué)重點是公式的推導(dǎo)及運用,難點是公式推導(dǎo)的思路.

教學(xué)用具

幻燈片,課件,電腦.

教學(xué)方法

引導(dǎo)發(fā)現(xiàn)法.

教學(xué)過程

一、新課引入:

(問題見教材第129頁)提出問題:(幻燈片)

二、新課講解:

記,式中有64項,后項與前項的比為公比2,當(dāng)每一項都乘以2后,中間有62項是對應(yīng)相等的,作差可以相互抵消.

(板書)即,①

,②

②-①得即.

由此對于一般的等比數(shù)列,其前項和,如何化簡

(板書)等比數(shù)列前項和公式

仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比,即

(板書)③兩端同乘以,得

④,

③-④得⑤,(提問學(xué)生如何處理,適時提醒學(xué)生注意的取值)

當(dāng)時,由③可得(不必導(dǎo)出④,但當(dāng)時設(shè)想不到)

當(dāng)時,由⑤得.

于是

反思推導(dǎo)求和公式的方法——錯位相減法,可以求形如的數(shù)列的和,其中為等差數(shù)列,為等比數(shù)列.

(板書)例題:求和:.

設(shè),其中為等差數(shù)列,為等比數(shù)列,公比為,利用錯位相減法求和.

解:,

兩端同乘以,得

兩式相減得

于是.

說明:錯位相減法實際上是把一個數(shù)列求和問題轉(zhuǎn)化為等比數(shù)列求和的問題.

公式其它應(yīng)用問題注意對公比的分類討論即可.

三、小結(jié):

1.等比數(shù)列前項和公式推導(dǎo)中蘊含的思想方法以及公式的應(yīng)用;

2.用錯位相減法求一些數(shù)列的前項和.

四、作業(yè):略

高一數(shù)學(xué)教案集合的運算模板2

教學(xué)準備

教學(xué)目標

熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。

教學(xué)重難點

熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。

教學(xué)過程

【復(fù)習(xí)要求】熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。-

【方法規(guī)律】應(yīng)用數(shù)列知識界實際應(yīng)用問題的關(guān)鍵是通過對實際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差(或公比)等基本元素,然后設(shè)計合理的計算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練

1.某種細菌在培養(yǎng)過程中,每20分鐘-一次(一個-為兩個),經(jīng)過3小時,這種細菌由1個可繁殖成()

A、511B、512C、1023D、1024

2.若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為()

A、B、

C、D、

二、典型例題

例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即最后一期)的利息是Ap,問到第n期期末的本金和是多少

評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期(存期+1)利率]

例2:某人從1999到2023年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉(zhuǎn)為新的一年定期,到2023年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元

例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從2023年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經(jīng)過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)

例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多并求這一天的新患者人數(shù).

高一數(shù)學(xué)教案集合的運算模板3

一、目的要求

結(jié)合集合的圖形表示,理解交集與并集的概念。

二、內(nèi)容分析

1.這小節(jié)繼續(xù)研究集合的運算,即集合的交、并及其性質(zhì)。

2.本節(jié)課的重點是交集與并集的概念,難點是弄清交集與并集的概念,符號之間的區(qū)別與聯(lián)系。

三、教學(xué)過程

復(fù)習(xí)提問:

1.說出A的意義。

2.填空:如果全集U={x|0≤x6,X∈Z},A={1,3,5},B={1,4},那么,

A=_________,B=__________。

(A={0,2,4},B={0,2,3,5})

新課講解:

1.觀察下面兩個圖的陰影部分,它們同集合A、集合B有什么關(guān)系

2.定義:

(1)交集:A∩B={x∈A,且x∈B}。

(2)并集:A∪B={x∈A,且x∈B}。

3.講解教科書1.3節(jié)例1-例5。

組織討論:

觀察下面表示兩個集合A與B之間關(guān)系的5個圖,根據(jù)這些圖分別討論A∩B與A∪B。

(2)中A∩B=φ。

(3)中A∩B=B,A∪B=A。

(4)中A∩B=A,A∪B=B。

(5)中A∩B=A∪B=A=B。

課堂練習(xí):

教科書1.3節(jié)第一個練習(xí)第1~5題。

拓廣引申:

在教科書的例3中,由A={3,5,6,8},B={4,5,7,8},得

A∪B={3,5,6,8}∪{4,5,7,8}

={3,4,5,6,7,8}

我們研究一下上面三個集合中的元素的個數(shù)問題。我們把有限集合A的元素個數(shù)記作card(A)=4,card(B)=4,card(A∪B)=6.

顯然,

card(A∪B)≠card(A)+card(B)

這是因為集合中的元素是沒有重復(fù)現(xiàn)象的,在兩個集合的公共元素只能出現(xiàn)一次。那么,怎樣求card(A∪B)呢不難看出,要扣除兩個集合的公共元素的個數(shù),即card(A∩B)。在上例中,card(A∩B)=2。

一般地,對任意兩個有限集合A,B,有

card(A∪B)=card(A)+card(B)-card(A∩B)。

四、布置作業(yè)

1.教科書習(xí)題1.3第1~5題。

2.選作:設(shè)集合A={x|-4≤x2},B={-1

求A∩B∩C,A∪B∩C。

(A∩B∩C={-1

高一數(shù)學(xué)教案集合的運算模板4

(一)教學(xué)目標

1.知識與技能

(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.

(2)能使用Venn圖表示集合的并集和交集運算結(jié)果,體會直觀圖對理解抽象概念的作用。

(3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進行集合的并集與交集運算。

2.過程與方法

通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.

3.情感、態(tài)度與價值觀

通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學(xué)生運用數(shù)學(xué)知識和數(shù)學(xué)思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學(xué)的應(yīng)用價值.

(二)教學(xué)重點與難點

重點:交集、并集運算的含義,識記與運用.

難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系

(三)教學(xué)方法

在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.

(四)教學(xué)過程

教學(xué)環(huán)節(jié)教學(xué)內(nèi)容師生互動設(shè)計意圖

提出問題引入新知思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算.

(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}

(2)A={x|x是有理數(shù)},

B={x|x是無理數(shù)},

C={x|x是實數(shù)}.

師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實數(shù)能進行加減運算,探究集合是否有相應(yīng)運算.

生:集合A與B的元素合并構(gòu)成C.

師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算.生疑析疑,

導(dǎo)入新知

形成

概念

思考:并集運算.

集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

定義:由所有屬于集合A或集合B的元素組成的集合.稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B={x|x∈A,或x∈B},Venn圖表示為:

師:請同學(xué)們將上述兩組實例的共同規(guī)律用數(shù)學(xué)語言表達出來.

學(xué)生合作交流:歸納→回答→補充或修正→完善→得出并集的定義.在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

應(yīng)用舉例例1設(shè)A={4,5,6,8},B={3,5,7,8},求A∪B.

例2設(shè)集合A={x|–1

例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.

例2解:A∪B={x|–1

師:求并集時,兩集合的相同元素如何在并集中表示.

生:遵循集合元素的互異性.

師:涉及不等式型集合問題.

注意利用數(shù)軸,運用數(shù)形結(jié)合思想求解.

生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間.同時注意集合元素的互異性.學(xué)生嘗試求解,老師適時適當(dāng)指導(dǎo),評析.

固化概念

提升能力

探究性質(zhì)①A∪A=A,②A∪=A,

③A∪B=B∪A,

④∪B,∪B.

老師要求學(xué)生對性質(zhì)進行合理解釋.培養(yǎng)學(xué)生數(shù)學(xué)思維能力.

形成概念自學(xué)提要:

①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算

②交集運算具有的運算性質(zhì)呢

交集的定義.

由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

即A∩B={x|x∈A且x∈B}

Venn圖表示

老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識,自我體會交集運算的含義.并總結(jié)交集的性質(zhì).

生:①A∩A=A;

②A∩=;

③A∩B=B∩A;

④A∩,A∩.

師:適當(dāng)闡述上述性質(zhì).

自學(xué)輔導(dǎo),合作交流,探究交集運算.培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

應(yīng)用舉例例1(1)A={2,4,6,8,10},

B={3,5,8,12},C={8}.

(2)新華中學(xué)開運動會,設(shè)

A={x|x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},

B={x|x是新華中學(xué)高一年級參加跳高比賽的同學(xué)},求A∩B.

例2設(shè)平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關(guān)系.學(xué)生上臺板演,老師點評、總結(jié).

例1解:(1)∵A∩B={8},

∴A∩B=C.

(2)A∩B就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合.所以,A∩B={x|x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.

例2解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點,平行或重合.

(1)直線l1,l2相交于一點P可表示為L1∩L2={點P};

(2)直線l1,l2平行可表示為

L1∩L2=;

(3)直線l1,l2重合可表示為

L1∩L2=L1=L2.提升學(xué)生的動手實踐能力.

歸納總結(jié)并集:A∪B={x|x∈A或x∈B}

交集:A∩B={x|x∈A且x∈B}

性質(zhì):①A∩A=A,A∪A=A,

②A∩=,A∪=A,

③A∩B=B∩A,A∪B=B∪A.學(xué)生合作交流:回顧→反思→總理→小結(jié)

老師點評、闡述歸納知識、構(gòu)建知識網(wǎng)絡(luò)

課后作業(yè)1.1第三課時習(xí)案學(xué)生獨立完成鞏固知識,提升能力,反思升華

備選例題

例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.

【解析】法一:∵A∩B={–2},∴–2∈B,

∴a–1=–2或a+1=–2,

解得a=–1或a=–3,

當(dāng)a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.

當(dāng)a=–3時,A={–1,10,6},A不合要求,a=–3舍去

∴a=–1.

法二:∵A∩B={–2},∴–2∈A,

又∵a2+1≥1,∴a2–3=–2,

解得a=±1,

當(dāng)a=1時,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.

當(dāng)a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.

例2集合A={x|–1

(1)若A∩B=,求a的取值范圍;

(2)若A∪B={x|x1},求a的取值范圍.

【解析】(1)如下圖所示:A={x|–1

∴數(shù)軸上點x=a在x=–1左側(cè).

∴a≤–1.

(2)如右圖所示:A={x|–1

∴數(shù)軸上點x=a在x=–1和x=1之間.

∴–1

例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何實數(shù)時,A∩B與A∩C=同時成立

【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.

由A∩B和A∩C=同時成立可知,3是方程x2–ax+a2–19=0的解.將3代入方程得a2–3a–10=0,解得a=5或a=–2.

當(dāng)a=5時,A={x|x2–5x+6=0}={2,3},此時A∩C={2},與題設(shè)A∩C=相矛盾,故不適合.

當(dāng)a=–2時,A={x|x2+2x–15=0}={3,5},此時A∩B與A∩C=,同時成立,∴滿足條件的實數(shù)a=–2.

例4設(shè)集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.

【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.

當(dāng)x=3時,A={9,5,–4},B={–2,–2,9},B中元素違背了互異性,舍去.

當(dāng)x=–3時,A={9,–7,–4},B={–8,4,9},A∩B={9}滿足題意,故A∪B={–7,–4,–8,4,9}.

當(dāng)x=5時,A={25,9,–4},B={0,–4,9},此時A∩B={–4,9}與A∩B={9}矛盾,故舍去.

綜上所述,x=–3且A∪B={–8,–4,4,–7,9}.

高一數(shù)學(xué)教案集合的運算模板5

一、目的要求

1.通過本章的引言,使學(xué)生初步了解本章所研究的問題是集合與簡易邏輯的有關(guān)知識,并認識到用數(shù)學(xué)解決實際問題離不開集合與邏輯的知識。

2.在小學(xué)與初中的基礎(chǔ)上,結(jié)合實例,初步理解集合的概念,并知道常用數(shù)集及其記法。

3.從集合及其元素的概念出發(fā),初步了解屬于關(guān)系的意義。

二、內(nèi)容分析

1.集合是中學(xué)數(shù)學(xué)的一個重要的基本概念。在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學(xué)生認識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)。

把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)。例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

2.1.1節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

3.這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念。學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認識學(xué)習(xí)本章的意義。本節(jié)課的教學(xué)重點是集合的基本概念。

4.在初中幾何中,點、直線、平面等概念都是原始的、不定義的概念,類似地,集合則是集合論中的原始的、不定義的概念。在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識。教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集?!边@句話,只是對集合概念的描述性說明。

三、教學(xué)過程

提出問題:

教科書引言所給的問題。

組織討論:

為什么“回答有20名同學(xué)參賽”不一定對,怎么解決這個問題。

歸納總結(jié):

1.可能有的同學(xué)兩次運動會都參加了,因此,不能簡單地用加法解決這個問題.

2.怎么解決這個問題呢以前我們解一個問題,通常是先用代數(shù)式表示問題中的數(shù)量關(guān)系,再進一步求解,也就是先用數(shù)學(xué)語言描述它,把它數(shù)學(xué)化。這個問題與我們過去學(xué)過的問題不同,是屬于與集合有關(guān)的問題,因此需要先用集合的語言描述它,完全解決問題,還需要更多的集合與邏輯的知識,這就是本章將要學(xué)習(xí)的內(nèi)容了。

提出問題:

1.在初中,我們學(xué)過哪些集合

2.在初中,我們用集合描述過什么

組織討論:

什么是集合

歸納總結(jié):

1.代數(shù):實數(shù)集合,不等式的解集等;

幾何:點的集合等。

2.在初中幾何中,圓的概念是用集合描述的。

新課講解:

1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論