2022-2023學(xué)年廣東省肇慶市端州區(qū)地質(zhì)中學(xué)中考數(shù)學(xué)押題試卷含解析_第1頁(yè)
2022-2023學(xué)年廣東省肇慶市端州區(qū)地質(zhì)中學(xué)中考數(shù)學(xué)押題試卷含解析_第2頁(yè)
2022-2023學(xué)年廣東省肇慶市端州區(qū)地質(zhì)中學(xué)中考數(shù)學(xué)押題試卷含解析_第3頁(yè)
2022-2023學(xué)年廣東省肇慶市端州區(qū)地質(zhì)中學(xué)中考數(shù)學(xué)押題試卷含解析_第4頁(yè)
2022-2023學(xué)年廣東省肇慶市端州區(qū)地質(zhì)中學(xué)中考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.把直線l:y=kx+b繞著原點(diǎn)旋轉(zhuǎn)180°,再向左平移1個(gè)單位長(zhǎng)度后,經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,4),則直線l的表達(dá)式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-22.下列運(yùn)算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=63.在平面直角坐標(biāo)系xOy中,將點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,得到的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)4.有理數(shù)a,b在數(shù)軸上的對(duì)應(yīng)點(diǎn)如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④5.下列圖案中,是軸對(duì)稱圖形的是()A. B. C. D.6.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.7.如圖,A、B為⊙O上兩點(diǎn),D為弧AB的中點(diǎn),C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.8.下列圖形中,可以看作中心對(duì)稱圖形的是()A. B. C. D.9.濰坊市2018年政府工作報(bào)告中顯示,濰坊社會(huì)經(jīng)濟(jì)平穩(wěn)運(yùn)行,地區(qū)生產(chǎn)總值增長(zhǎng)8%左右,社會(huì)消費(fèi)品零售總額增長(zhǎng)12%左右,一般公共預(yù)算收入539.1億元,7家企業(yè)入選國(guó)家“兩化”融合貫標(biāo)試點(diǎn),濰柴集團(tuán)收入突破2000億元,榮獲中國(guó)商標(biāo)金獎(jiǎng).其中,數(shù)字2000億元用科學(xué)記數(shù)法表示為()元.(精確到百億位)A.2×1011B.2×1012C.2.0×1011D.2.0×101010.將拋物線y=x2﹣6x+21向左平移2個(gè)單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖所示,擺第一個(gè)“小屋子”要5枚棋子,擺第二個(gè)要11枚棋子,擺第三個(gè)要17枚棋子,則擺第30個(gè)“小屋子”要___枚棋子.12.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減??;⑥a+b+c>0中,正確的有______.(只填序號(hào))13.如圖,小明想用圖中所示的扇形紙片圍成一個(gè)圓錐,已知扇形的半徑為5cm,弧長(zhǎng)是cm,那么圍成的圓錐的高度是cm.14.如圖,點(diǎn)A、B、C、D在⊙O上,O點(diǎn)在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=▲°.15.某種水果的售價(jià)為每千克a元,用面值為50元的人民幣購(gòu)買了3千克這種水果,應(yīng)找回元(用含a的代數(shù)式表示).16.定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長(zhǎng)稱為P,Q的“實(shí)際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實(shí)際距離”為1,即PS+SQ=1或PT+TQ=1.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個(gè)小區(qū)的坐標(biāo)分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點(diǎn)M表示單車停放點(diǎn),且滿足M到A,B,C的“實(shí)際距離”相等,則點(diǎn)M的坐標(biāo)為_____.三、解答題(共8題,共72分)17.(8分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.18.(8分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點(diǎn)A(-1,2),B(m,-1).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)在x軸上是否存在點(diǎn)P(n,0),使△ABP為等腰三角形,請(qǐng)你直接寫出P點(diǎn)的坐標(biāo).19.(8分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣12x+3的圖象與反比例函數(shù)y=kx(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點(diǎn).求反比例函數(shù)的表達(dá)式;點(diǎn)C是第一象限內(nèi)一點(diǎn),連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點(diǎn)P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點(diǎn)20.(8分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點(diǎn)D,E為⊙O上的一點(diǎn),連接DE,BE,DE與AB交于點(diǎn)F.求證:BC為⊙O的切線;若F為OA的中點(diǎn),⊙O的半徑為2,求BE的長(zhǎng).21.(8分)在△ABC中,,以邊AB上一點(diǎn)O為圓心,OA為半徑的圈與BC相切于點(diǎn)D,分別交AB,AC于點(diǎn)E,F(xiàn)如圖①,連接AD,若,求∠B的大?。蝗鐖D②,若點(diǎn)F為的中點(diǎn),的半徑為2,求AB的長(zhǎng).22.(10分)平面直角坐標(biāo)系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱軸為直線l,過點(diǎn)C作直線l的垂線,垂足為點(diǎn)E,聯(lián)結(jié)DC、BC.(1)當(dāng)點(diǎn)C(0,3)時(shí),①求這條拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);②求證:∠DCE=∠BCE;(2)當(dāng)CB平分∠DCO時(shí),求m的值.23.(12分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長(zhǎng).拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對(duì)稱點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫出β的取值范圍.24.已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為2cm/s;同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向點(diǎn)C勻速運(yùn)動(dòng),速度為lcm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),解答下列問題:(1)當(dāng)為t何值時(shí),PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先利用待定系數(shù)法求出直線AB的解析式,再求出將直線AB向右平移1個(gè)單位長(zhǎng)度后得到的解析式,然后將所得解析式繞著原點(diǎn)旋轉(zhuǎn)180°即可得到直線l.【詳解】解:設(shè)直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個(gè)單位長(zhǎng)度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點(diǎn)旋轉(zhuǎn)180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達(dá)式是y=2x?2.故選:B.【點(diǎn)睛】本題考查了一次函數(shù)圖象平移問題,掌握解析式“左加右減”的規(guī)律以及關(guān)于原點(diǎn)對(duì)稱的規(guī)律是解題的關(guān)鍵.2、D【解析】

運(yùn)用正確的運(yùn)算法則即可得出答案.【詳解】A、應(yīng)該為a5,錯(cuò)誤;B、為2,錯(cuò)誤;C、為4,錯(cuò)誤;D、正確,所以答案選擇D項(xiàng).【點(diǎn)睛】本題考查了四則運(yùn)算法則,熟悉掌握是解決本題的關(guān)鍵.3、A【解析】

根據(jù)點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,所得到的對(duì)應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對(duì)稱求解即可.【詳解】∵將點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,∴得到的對(duì)應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對(duì)稱,∵點(diǎn)N(–1,–2),∴得到的對(duì)應(yīng)點(diǎn)的坐標(biāo)是(1,2).故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對(duì)應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對(duì)稱是解答本題的關(guān)鍵.4、B【解析】分析:本題是考察數(shù)軸上的點(diǎn)的大小的關(guān)系.解析:由圖知,b<0<a,故①正確,因?yàn)閎點(diǎn)到原點(diǎn)的距離遠(yuǎn),所以|b|>|a|,故②錯(cuò)誤,因?yàn)閎<0<a,所以ab<0,故③錯(cuò)誤,由①知a-b>a+b,所以④正確.故選B.5、B【解析】

根據(jù)軸對(duì)稱圖形的定義,逐一進(jìn)行判斷.【詳解】A、C是中心對(duì)稱圖形,但不是軸對(duì)稱圖形;B是軸對(duì)稱圖形;D不是對(duì)稱圖形.故選B.【點(diǎn)睛】本題考查的是軸對(duì)稱圖形的定義.6、A【解析】

根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,熟記銳角三角函數(shù)的定義內(nèi)容是解題的關(guān)鍵.7、C【解析】

連接D為弧AB的中點(diǎn),根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,根據(jù)全等三角形的性質(zhì)可得:即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則即可求出的值.【詳解】如圖:連接D為弧AB的中點(diǎn),根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則故選C.【點(diǎn)睛】考查弧,弦之間的關(guān)系,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù)等,綜合性比較強(qiáng),關(guān)鍵是構(gòu)造全等三角形.8、B【解析】

根據(jù)中心對(duì)稱圖形的概念求解.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

B、是中心對(duì)稱圖形,故此選項(xiàng)正確;

C、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

D、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.

故選:B.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形的概念,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.9、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】2000億元=2.0×1.

故選:C.【點(diǎn)睛】考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.10、D【解析】

直接利用配方法將原式變形,進(jìn)而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個(gè)單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】

根據(jù)題意分析可得:第1個(gè)圖案中棋子的個(gè)數(shù)5個(gè),第2個(gè)圖案中棋子的個(gè)數(shù)5+6=11個(gè),…,每個(gè)圖形都比前一個(gè)圖形多用6個(gè),繼而可求出第30個(gè)“小屋子”需要的棋子數(shù).【詳解】根據(jù)題意分析可得:第1個(gè)圖案中棋子的個(gè)數(shù)5個(gè).第2個(gè)圖案中棋子的個(gè)數(shù)5+6=11個(gè).….每個(gè)圖形都比前一個(gè)圖形多用6個(gè).∴第30個(gè)圖案中棋子的個(gè)數(shù)為5+29×6=1個(gè).故答案為1.【點(diǎn)睛】考核知識(shí)點(diǎn):圖形的規(guī)律.分析出一般數(shù)量關(guān)系是關(guān)鍵.12、①②③⑤【解析】

根據(jù)圖象可判斷①②③④⑤,由x=1時(shí),y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對(duì)稱軸為x=∴abc>0,4ac<b2,當(dāng)時(shí),y隨x的增大而減?。盛佗冖菡_,∵∴2a+b>0,故③正確,由圖象可得頂點(diǎn)縱坐標(biāo)小于﹣2,則④錯(cuò)誤,當(dāng)x=1時(shí),y=a+b+c<0,故⑥錯(cuò)誤故答案為:①②③⑤【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.13、4【解析】

已知弧長(zhǎng)即已知圍成的圓錐的底面半徑的長(zhǎng)是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長(zhǎng)是5cm.就可以根據(jù)勾股定理求出圓錐的高.【詳解】設(shè)底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.14、1.【解析】試題分析:∵四邊形OABC為平行四邊形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四邊形ABCD是圓的內(nèi)接四邊形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案為1°.考點(diǎn):①平行四邊形的性質(zhì);②圓內(nèi)接四邊形的性質(zhì).15、(50-3a).【解析】試題解析:∵購(gòu)買這種售價(jià)是每千克a元的水果3千克需3a元,∴根據(jù)題意,應(yīng)找回(50-3a)元.考點(diǎn):列代數(shù)式.16、(1,﹣2).【解析】

若設(shè)M(x,y),則由題目中對(duì)“實(shí)際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).三、解答題(共8題,共72分)17、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.18、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)將A點(diǎn)代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點(diǎn)代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令A(yù)P=AB,求P.令BP=BA,求P.根據(jù)坐標(biāo)距離公式計(jì)算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點(diǎn)睛】本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關(guān)鍵是待定系數(shù)法,分三種情況討論.19、(1)反比例函數(shù)的表達(dá)式為y=4x(x>0);(2)點(diǎn)P【解析】

(1)根據(jù)點(diǎn)A(a,2),B(4,b)在一次函數(shù)y=﹣12x+3的圖象上求出a、b的值,得出A、B(2)延長(zhǎng)CA交y軸于點(diǎn)E,延長(zhǎng)CB交x軸于點(diǎn)F,構(gòu)建矩形OECF,根據(jù)S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF,設(shè)點(diǎn)P(0,m),根據(jù)反比例函數(shù)的幾何意義解答即可.【詳解】(1)∵點(diǎn)A(a,2),B(4,b)在一次函數(shù)y=﹣12x∴﹣12a+3=2,b=﹣1∴a=2,b=1,∴點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)B的坐標(biāo)為(4,1),又∵點(diǎn)A(2,2)在反比例函數(shù)y=kx∴k=2×2=4,∴反比例函數(shù)的表達(dá)式為y=4x(x(2)延長(zhǎng)CA交y軸于點(diǎn)E,延長(zhǎng)CB交x軸于點(diǎn)F,∵AC∥x軸,BC∥y軸,則有CE⊥y軸,CF⊥x軸,點(diǎn)C的坐標(biāo)為(4,2)∴四邊形OECF為矩形,且CE=4,CF=2,∴S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣12×2×2﹣1=4,設(shè)點(diǎn)P的坐標(biāo)為(0,m),則S△OAP=12×2?|m∴m=±4,∴點(diǎn)P的坐標(biāo)為(0,4)或(0,﹣4).【點(diǎn)睛】此題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,涉及的知識(shí)有:坐標(biāo)與圖形性質(zhì),直線與坐標(biāo)軸的交點(diǎn),待定系數(shù)法求函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.20、(1)證明見解析;(2)【解析】

(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長(zhǎng),再證明△AFD∽△EFB,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點(diǎn),∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點(diǎn),∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點(diǎn)睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運(yùn)用;證明某一線段是圓的切線時(shí),一般情況下是連接切點(diǎn)與圓心,通過證明該半徑垂直于這一線段來判定切線.21、(1)∠B=40°;(2)AB=6.【解析】

(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD

,即可求得∠CAD=∠ADO

,繼而求得答案;

(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD

,由點(diǎn)F為弧AD的中點(diǎn),易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點(diǎn)D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點(diǎn)F為弧AD的中點(diǎn),∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),弧弦圓心角的關(guān)系,等邊三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì).熟練掌握切線的性質(zhì)是解(1)的關(guān)鍵,證明△AOF為等邊三角形是解(2)的關(guān)鍵.22、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】

(1)①把C點(diǎn)坐標(biāo)代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點(diǎn)式得到D點(diǎn)坐標(biāo);②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對(duì)稱軸交x軸于F點(diǎn),交直線BC于G點(diǎn),如圖2,把一般式配成頂點(diǎn)式得到拋物線的對(duì)稱軸為直線x=m,頂點(diǎn)D的坐標(biāo)為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時(shí)確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點(diǎn)D為(1,4);②證明:如圖1,當(dāng)y=0時(shí),﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對(duì)稱軸交x軸于F點(diǎn),交直線BC于G點(diǎn),如圖2,∴拋物線的對(duì)稱軸為直線x=m,頂點(diǎn)D的坐標(biāo)為(m,4m2),當(dāng)y=0時(shí),﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當(dāng)x=0時(shí),y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【點(diǎn)睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)和等腰三角形的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;靈活應(yīng)用等腰直角三角形的性質(zhì)進(jìn)行幾何計(jì)算;理解坐標(biāo)與圖形性質(zhì),記住兩點(diǎn)間的距離公式.23、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對(duì)稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長(zhǎng),根據(jù)垂徑定理就可求出折痕的長(zhǎng).拓展:(1)過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時(shí),可知ON⊥A′N,則可知α=45°,當(dāng)O′在時(shí),連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí)α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點(diǎn)O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論