九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本(3篇)_第1頁
九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本(3篇)_第2頁
九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本(3篇)_第3頁
九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本(3篇)_第4頁
九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本(3篇)_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第10頁共10頁九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個正數(shù)有兩個平方根,會利用開方求一個正數(shù)的兩個平方根,并且也學(xué)習(xí)了完全平方公式。在本章前面幾節(jié)課中,又學(xué)習(xí)了一元二次方程的概念,并經(jīng)歷了用估算法求一元二次方程的根的過程,初步理解了一元二次方程解的意義;學(xué)生活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了用計算器估算一元二次方程解的過程,解決了一些簡單的現(xiàn)實問題,感受到解一元二次方程的必要性和作用,基于學(xué)生的學(xué)習(xí)心理規(guī)律,在學(xué)習(xí)了估算法求解一元二次方程的基礎(chǔ)上,學(xué)生自然會產(chǎn)生用簡單方法求其解的欲望;同時在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗,具備了一定的合作與交流的能力。二、教學(xué)任務(wù)分析教科書基于學(xué)生用估算的方法求解一元二次方程的基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):用配方法解二次項系數(shù)為1且一次項系數(shù)為偶數(shù)的一元二次方程。但這僅僅是這堂課具體的教學(xué)目標(biāo),或者說是一個近期目標(biāo)。而數(shù)學(xué)教學(xué)的遠(yuǎn)期目標(biāo),應(yīng)該與具體的課堂教學(xué)任務(wù)產(chǎn)生實質(zhì)性聯(lián)系。本課《配方法》內(nèi)容從屬于“方程與不等式”這一數(shù)學(xué)學(xué)習(xí)領(lǐng)域,因而務(wù)必服務(wù)于方程教學(xué)的遠(yuǎn)期目標(biāo):“讓學(xué)生經(jīng)歷由具體問題抽象出方程的過程,體會方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效模型,并在解一元二次方程的過程中體會轉(zhuǎn)化的數(shù)學(xué)思想”,同時也應(yīng)力圖在學(xué)習(xí)中逐步達成學(xué)生的有關(guān)情感態(tài)度目標(biāo)。為此,本節(jié)課的教學(xué)目標(biāo)是:1、會用開方法解形如(____?m)2?n(n?0)的方程,理解配方法,會用配方法解二次項系數(shù)為1,一次項系數(shù)為偶數(shù)的一元二次方程;2、經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效模型,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力;3、體會轉(zhuǎn)化的數(shù)學(xué)思想方法;4、能根據(jù)具體問題中的實際意義檢驗結(jié)果的合理性。三、教學(xué)過程分析本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)回顧;第二環(huán)節(jié):情境引入;第三環(huán)節(jié):講授新課;第四環(huán)節(jié):練習(xí)提高;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。第一環(huán)節(jié):復(fù)習(xí)回顧活動內(nèi)容:1、如果一個數(shù)的平方等于4,則這個數(shù)是,若一個數(shù)的平方等于7,則這個數(shù)是。一個正數(shù)有幾個平方根,它們具有怎樣的關(guān)系?2、用字母表示完全平方公式。3、用估算法求方程____2?4____?2?0的解?你喜歡這種方法嗎?為什么?你能設(shè)法求出其精確解嗎?活動目的:以問題串的形式引導(dǎo)學(xué)生逐步深入地思考,通過前兩個問題,引導(dǎo)學(xué)生復(fù)習(xí)開平方和完全平方公式,通過后一個問題的回答讓學(xué)生進一步體會用估計法解一元二次方程較麻煩,激發(fā)學(xué)生的求知欲,為學(xué)生后面配方法的學(xué)習(xí)作好鋪墊。實際效果:第1和第2問選兩三個學(xué)生口答,由于問題較簡單,學(xué)生很快回答出來。第3問由學(xué)生獨立練習(xí),通過練習(xí),學(xué)生既復(fù)習(xí)了估算法,同時又進一步體會到了估算法較麻煩,達到了激發(fā)學(xué)生探索新解法的目的。第二環(huán)節(jié):情境引入活動內(nèi)容:(1)工人師傅想在一塊足夠大的長方形鐵皮上裁出一個面積為100CM2正方形,請你幫他想一想,這個正方形的邊長應(yīng)為;若它的面積為75CM2,則其邊長應(yīng)為。(選____個同學(xué)口答)(2)如果一個正方形的邊長增加3cm后,它的面積變?yōu)?4cm2,則原來的正方形的邊長為。若變化后的面積為48cm2呢?(小組合作交流)(3)你會解下列一元二次方程嗎?(獨立練習(xí))____2?5;(____?2)2?5;____2?12____?36?0。(4)上節(jié)課,我們研究梯子底端滑動的距離____(m)滿足方程____2?12____?15?0,你能仿照上面幾個方程的解題過程,求出____的精確解嗎?你認(rèn)為用這種方法解這個方程的困難在哪里?(合作交流)活動目的:利用實際問題,讓學(xué)生初步體會開方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識。實際效果:在復(fù)習(xí)了開方的基礎(chǔ)上,學(xué)生很快口答出了第1問,為解決第二問做好了準(zhǔn)備。第2問讓學(xué)生合作解決,學(xué)生在交流如何求原來正方形的邊長時,產(chǎn)生了不同的方法,有的學(xué)生直接開方先求出了新正方形的邊,再減增加的邊長,求出原來的正方形的邊長;有的同學(xué)用了方程,設(shè)原正方形的邊長為____cm,根據(jù)題意列出了一元二次方程(____?3)2?64;(____?3)2?48然后兩邊開方,根據(jù)實際情況求出了原來正方形的邊長,這樣,再一次經(jīng)歷了用一元二次方程解決實際問題的過程,并初步了解了開方法在一元二次方程中的簡單應(yīng)用。在第2問的基礎(chǔ)上,學(xué)生很快解決了第3問。但學(xué)生在解決第4問時遇到了困難,他們發(fā)現(xiàn)等號的左端不是完全平方式,不能直接化成(____?m)2?n(n?0)的形式,因此大部分同學(xué)認(rèn)為這個方程不能用開方法解,那么如何解決這樣的方程問題呢?這就是我們本節(jié)課要來研究的問題(自然引出課題),為后面探索配方法埋好了伏筆。第三環(huán)節(jié):講授新課活動內(nèi)容1:做一做:(填空配成完全平方式,體會如何配方)填上適當(dāng)?shù)臄?shù),使下列等式成立。(選____個學(xué)生口答)____2?12____?____?(____?6)2____2?6____?____?(____?3)2____2?8____?____?(____?____)2____2?4____?____?(____?____)2問題:上面等式的左邊常數(shù)項和一次項系數(shù)有什么關(guān)系?對于形如____2?a____的式子如何配成完全平方式?(小組合作交流)活動目的:配方法的關(guān)鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個填空題,使學(xué)生能夠用語言敘述并充分理解左邊填的是“一次項系數(shù)一半的平方”,右邊填的是“一次項系數(shù)的一半”,進一步復(fù)習(xí)鞏固完全平方式中常數(shù)項與一次項系數(shù)的關(guān)系,為后面學(xué)習(xí)掌握配方法解一元二次方程做好充分的準(zhǔn)備。實際效果:由于在復(fù)習(xí)回顧時已經(jīng)復(fù)習(xí)過完全平方式,所以大部分學(xué)生很快解決四個小填空題。通過小組的合作交流,學(xué)生發(fā)現(xiàn)要把形如____2?a____的式子a如何配成完全平方式,只要加上一次項系數(shù)一半的平方即加上()2即可。而2且講解中小組之間互相補充、互相競爭,氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實上,通過對配方的感知的過程,學(xué)生都能用自己的語言歸納總結(jié)出配成完全平方式的方法,這就為下一環(huán)節(jié)“用配方法解一元二次方程”打好基礎(chǔ)。由此也反映出學(xué)生善于觀察分析的良好品質(zhì),而這種品質(zhì)是在學(xué)生自覺行為中得到培養(yǎng)的,體現(xiàn)了學(xué)生良好的情感、態(tài)度、價值觀?;顒觾?nèi)容2:解決例題(1)解方程:____2+8____-9=0.(師生共同解決)解:可以把常數(shù)項移到方程的右邊,得____2+8____=9兩邊都加上(一次項系數(shù)8的一半的平方),得____2+8____+42=9+42.(____+4)2=25開平方,得____+4=±5,即____+4=5,或____+4=-5.所以____1=1,____2=-9.(2)解決梯子底部滑動問題:____2?12____?15?0(仿照例1,學(xué)生獨立解決)解:移項得____2+12____=15,兩邊同時加上62得,____2+12____+62=15+36,即(____+6)2=51兩邊開平方,得____+6=±51所以:____1?6,____2?51?6,但因為____表示梯子底部滑動的距離所以____2?51?6不合題意舍去。答:梯子底部滑動了(51?6)米?;顒觾?nèi)容3:及時小結(jié)、整理思路用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)活動目的:通過對例1和例2的講解,規(guī)范配方法解一元二次方程的過程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(____?m)2?n(n?0)形式,同時通過例2提醒學(xué)生注意:有的方程雖然有兩個不同的解,但在處理實際問題時要根據(jù)實際意義檢驗結(jié)果的合理性,對結(jié)果進行取舍。由于此問題在情境引入時出現(xiàn)過,因此也達到前后呼應(yīng)的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。實際效果:學(xué)生經(jīng)過前一環(huán)節(jié)對配方法的特點有了初步的認(rèn)識,通過兩個例題的處理,進一步完善對配方法基本思路的把握,是對配方法的學(xué)習(xí)由探求邁向?qū)嶋H應(yīng)用的第一步。最后利用兩個問題,通過小組的合作交流得出配方法的基本思路和解決問題的關(guān)鍵,結(jié)論的得出來源于學(xué)生在實例分析中的親身感受,體現(xiàn)學(xué)生學(xué)習(xí)的主動性?;顒觾?nèi)容4、應(yīng)用提高例3:如圖,在一塊長和寬分別是____米和____米的長方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長方形面積的一半,試求水渠的寬度。(先獨立思考,再小組合作交流)活動目的:在前兩個例題的基礎(chǔ)上,通過例3進一步提高學(xué)生分析問題解決問題的能力,幫助學(xué)生熟練掌握配方法在實際問題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。實際效果:大部分學(xué)生通過獨立思考,結(jié)合圖形很快列出了方程,在交流過程中小組成員之間產(chǎn)生了分歧,有的同學(xué)認(rèn)為,如果設(shè)水渠的寬為____米,則1?12?16;有的同學(xué)認(rèn)為如果設(shè)水渠的寬為____米,則方程應(yīng)該是16?12?12____?16____?____2?12?16,并且給出了合理的解____方程應(yīng)該是(16?____)(12?____)?第四環(huán)節(jié):練習(xí)與提高活動內(nèi)容:解下列方程(1)____2?10____?25?7;(2)____2?6____?1;(3)____(____?14)?0(4)____2?8____?9活動目的:對本節(jié)知識進行鞏固練習(xí)。實際效果:此處留給學(xué)生充分的時間與空間進行獨立練習(xí),通過練習(xí),學(xué)生基本都能用配方法解解二次項系數(shù)為1、一次項系數(shù)為偶數(shù)的一元二次方程,取得了較好的教學(xué)效果,加深了學(xué)生對“用配方法解簡單一元二次方程”的理解。第五環(huán)節(jié):課堂小結(jié)活動內(nèi)容:師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時應(yīng)注意的問題?;顒幽康模汗膭顚W(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵)。實際效果:學(xué)生暢所欲言談自己的切身感受與實際收獲,掌握了配方法的基本思路和過程。第六環(huán)節(jié):布置作業(yè)課本50頁習(xí)題2.31題、2題四、教學(xué)反思1、創(chuàng)造性地使用教材教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實際情況進行適當(dāng)調(diào)整。學(xué)生在初一、初二已經(jīng)學(xué)過完全平方公式和如何對一個正數(shù)進行開方運算,而且普遍掌握較好,所以本節(jié)課從這兩個方面入手,利用幾個簡單的實際問題逐步引入配方法。教學(xué)中將難點放在探索如何配方上,重點放在配方法的應(yīng)用上。本節(jié)課老師安排了三個例題,通過前兩個例題規(guī)范用配方法解一元二次方程的過程,幫助學(xué)生充分掌握用配方法解一元二次方程的技巧,同時本節(jié)課創(chuàng)造性地使用教材,把配方法(3)中的一個是設(shè)計方案問題改編成一個實際應(yīng)用問題,讓學(xué)生體會到了方程在實際問題中的應(yīng)用,感受到了數(shù)學(xué)的實際價值。培養(yǎng)了學(xué)生分析問題,解決問題的能力。2、相信學(xué)生并為學(xué)生提供充分展示自己的機會課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。本節(jié)課多次組織學(xué)生合作交流,通過小組合作,為學(xué)生提供展示自己聰明才智的機會,并且在此過程中教師發(fā)現(xiàn)了學(xué)生在分析問題和解決問題時出現(xiàn)的獨到見解,以及思維的誤區(qū),這樣使得老師可以更好地指導(dǎo)今后的教學(xué)。3、注意改進的方面在小組討論之前,應(yīng)該留給學(xué)生充分的獨立思考的時間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)對小組討論給予適當(dāng)?shù)闹笇?dǎo),包括知識的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意的問題及對困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實效性。九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本(二)【學(xué)習(xí)目標(biāo)】1.了解整式方程和一元二次方程的概念。2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣?!局攸c、難點】重點:一元二次方程的概念和它的一般形式。難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定【學(xué)習(xí)過程】一、知識回顧1.什么是整式方程?____什么是-元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程。就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.2、指出下列方程那些是一元二次方程:那些是一元一次方程?(1)3____十2=5____-3(2)____2=4(3)(____十3)(3____o4)=(____十2)2;(4)(____-1)(____-2)=____2十8;以上是一元二次方程的為:____以上是一元一次方程的為____二、探究新知[一]1.一元二次方程的一般形式是()1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠0就成了一元一次方程了)2).方程中a____2、b____、c各項的名稱及a、b的系數(shù)名稱各是什么?3).強調(diào):一元二次方程的一般形式中"="的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按____的降冪排列:特別注意的是"="的右邊必須整理成0.探究新知(二)1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:(1)____2十3____十2=O____(2)____2-3____十4=0;____(3)3____2-5=0____(4)4____2十3____-2=0;____(5)3____2-5=0;____(6)6____2-____=0.________把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:(1)6____-2=3-7____;(2)3____(____-1)=2(____十2)-4;(3)(3____十2)2=4(____-3)2[學(xué)以致用:]強化概念:1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:(1)____2十3____十2=O____(2)____2-3____十4=0;____(3)3____2-5=0____(4)4____2十3____-2=0;____(5)3____2-5=0____(6)6____2-____=0________把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:(1)6____2=3-7____(2)3____(____-1)=2(____十2)-4(3)(3____十2)2=4(____-3)2[知識總結(jié):](1)什么是一元二次方程?是一元二次方程滿足哪幾個條件?(2)要知道一元二次方程的一般形式{a____2十b____十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左邊最多幾項、其中()可以不出現(xiàn)、但()必須存在。特別注意的是"="的右邊必須整理成();(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).如:(3____十2)2=4(____-3)____診斷檢測題一:1.一元二次方程的一般形式是____,其中____是二次項,____是一次項,____是常數(shù)項.____方程(3____-7)(2____+4)=4化為一般形式為____,其中二次項系數(shù)為____,一次項系數(shù)為____.____方程m____2+5____+n=0一定是().A.一元二次方程B.一元一次方程C.整式方程D.關(guān)于____的一元二次方程4.關(guān)于____的方程(m+1)____2+2m____-3=0是一元二次方程,則m的取值范圍是()A.任意實數(shù)B.m≠-1C.m>1D.m>0____方程:3____-1=0;3____2-1=0;2____2-1=(____-1)(____-2);3____2+Y=2____那些是一元二次方程?____把下列方程化成一般形式,且指出其二次項,一次項和常數(shù)項(1)2____(____-5)=3-____(2)(2____-1)(____+5)=6____診斷檢測題二:____方程的二次項系數(shù)是,一次項系數(shù)是,常數(shù)項是.____把一元二次方程化成二次項系數(shù)大于零的一般式是,其中二次項系數(shù)是,一次項的系數(shù)是,常數(shù)項是;3.一元二次方程的一個根是3,則;4.是實數(shù),且,則的值是.5.關(guān)于的方程是一元二次方程,則.____方程:①②③④中一元二次程是()A.①和②B.②和③C.③和④D.①和③九年級數(shù)學(xué)上冊教學(xué)工作計劃標(biāo)準(zhǔn)范本(三)一、學(xué)情分析:新學(xué)期,根據(jù)九年級合班的實際,首先是先摸清底子,穩(wěn)住學(xué)生,然后根據(jù)學(xué)生學(xué)情分布情況,重新劃分學(xué)習(xí)小組,對新來的學(xué)生,做好各方面的工作,使他們迅速適應(yīng)新環(huán)境,然后,盡快幫他們找到新的學(xué)習(xí)榜樣和新學(xué)伴,幫他們樹立競爭意識和發(fā)展意識以及創(chuàng)新意識,鼓勵大家在新學(xué)期,獲得更大的進步,取得更大的發(fā)展。二、教學(xué)內(nèi)容本學(xué)期所教九年級數(shù)學(xué)包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋轉(zhuǎn)》,第二十四章《圓》。第二十五章《概率初步》。代數(shù)三章,幾何兩章。而且本學(xué)期要授完下冊第二十七章內(nèi)容。三、教學(xué)目標(biāo):本學(xué)期的主要教學(xué)任務(wù)目標(biāo):(1)根據(jù)學(xué)情,調(diào)整好教學(xué)進度,優(yōu)化學(xué)習(xí)方法,激活知識積累。(2)形成知識網(wǎng)絡(luò),解決實際問題。(3)強化規(guī)范訓(xùn)練,提高應(yīng)考能力。(4)關(guān)注學(xué)生特長需求,做好學(xué)生心理疏導(dǎo)。具體的說,教育學(xué)生掌握基礎(chǔ)知識與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學(xué)生逐步學(xué)會正確、合理地進行運算,逐步學(xué)會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。使學(xué)生懂得數(shù)學(xué)來源與實踐又反過來作用于實踐。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實事求是的態(tài)度。頑強的學(xué)習(xí)毅力和獨立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決問題的能力。知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論