2023屆江蘇省南通市海安市八校聯(lián)考初三下學期5月階段驗收-數(shù)學試題試卷含解析_第1頁
2023屆江蘇省南通市海安市八校聯(lián)考初三下學期5月階段驗收-數(shù)學試題試卷含解析_第2頁
2023屆江蘇省南通市海安市八校聯(lián)考初三下學期5月階段驗收-數(shù)學試題試卷含解析_第3頁
2023屆江蘇省南通市海安市八校聯(lián)考初三下學期5月階段驗收-數(shù)學試題試卷含解析_第4頁
2023屆江蘇省南通市海安市八校聯(lián)考初三下學期5月階段驗收-數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023屆江蘇省南通市海安市八校聯(lián)考初三下學期5月階段驗收-數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°2.△ABC在網(wǎng)絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.3.下列計算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x4.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.145.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.46.在平面直角坐標系中,函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限7.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點8.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.19.下列立體圖形中,主視圖是三角形的是()A. B. C. D.10.2017年“智慧天津”建設成效顯著,互聯(lián)網(wǎng)出口帶寬達到17200吉比特每秒.將17200用科學記數(shù)法表示應為()A.172×102 B.17.2×103 C.1.72×104 D.0.172×105二、填空題(本大題共6個小題,每小題3分,共18分)11.把一張長方形紙條按如圖所示折疊后,若∠AOB′=70°,則∠B′OG=_____.12.某中學數(shù)學教研組有25名教師,將他們分成三組,在38~45(歲)組內(nèi)有8名教師,那么這個小組的頻率是_______。13.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm1.14.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為,表示慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為______.15.在△ABC中,點D在邊BC上,BD=2CD,,,那么=.16.反比例函數(shù)的圖象經(jīng)過點(﹣3,2),則k的值是_____.當x大于0時,y隨x的增大而_____.(填增大或減?。┤?、解答題(共8題,共72分)17.(8分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.求雙曲線解析式;點P在x軸上,如果△ACP的面積為5,求點P的坐標.18.(8分)先化簡,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.19.(8分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.20.(8分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?21.(8分)如圖,四邊形AOBC是正方形,點C的坐標是(4,0).正方形AOBC的邊長為,點A的坐標是.將正方形AOBC繞點O順時針旋轉45°,點A,B,C旋轉后的對應點為A′,B′,C′,求點A′的坐標及旋轉后的正方形與原正方形的重疊部分的面積;動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結果即可).22.(10分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.23.(12分)某年級組織學生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學生報名參加夏令營的情況,請你根據(jù)圖中的信息回答下列問題:該年級報名參加丙組的人數(shù)為;該年級報名參加本次活動的總人數(shù),并補全頻數(shù)分布直方圖;根據(jù)實際情況,需從甲組抽調部分同學到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應從甲組抽調多少名學生到丙組?24.如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.2、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.3、C【解析】

根據(jù)合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義逐項求解,利用排除法即可得到答案.【詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【點睛】本題考查了合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義,解答本題的關鍵是熟練掌握各知識點.4、B【解析】試題分析:根據(jù)平行四邊形的性質可知AB=CD,AD∥BC,AD=BC,然后根據(jù)平行線的性質和角平分線的性質可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質和等腰三角形的性質,解題關鍵是把所求線段轉化為題目中已知的線段,根據(jù)等量代換可求解.5、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.6、A【解析】【分析】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于k和b.當k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于x的系數(shù)和常數(shù)項.7、B【解析】

二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質.8、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關知識和勾股定理,屬于中等難度的題型.解決這個問題的關鍵是根據(jù)圓的知識得出點P的運動軌跡.9、A【解析】

考查簡單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看10、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將17200用科學記數(shù)法表示為1.72×1.

故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、55°【解析】

由翻折性質得,∠BOG=∠B′OG,根據(jù)鄰補角定義可得.【詳解】解:由翻折性質得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案為55°.【點睛】考核知識點:補角,折疊.12、0.1【解析】

根據(jù)頻率的求法:頻率=,即可求解.【詳解】解:根據(jù)題意,38-45歲組內(nèi)的教師有8名,

即頻數(shù)為8,而總數(shù)為25;

故這個小組的頻率是為=0.1;

故答案為0.1.【點睛】本題考查頻率、頻數(shù)的關系,屬于基礎題,關鍵是掌握頻率的求法:頻率=.13、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點:扇形面積的計算.14、【解析】

直接利用已知點坐標得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標確定位置,正確得出原點的位置是解題關鍵.15、【解析】

首先利用平行四邊形法則,求得的值,再由BD=2CD,求得的值,即可求得的值.【詳解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案為.16、﹣6增大【解析】

∵反比例函數(shù)的圖象經(jīng)過點(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質:(1)當k>0時,函數(shù)圖象在一,三象限,在每個象限內(nèi),y隨x的增大而減??;(2)當k<0時,函數(shù)圖象在二,四象限,在每個象限內(nèi),y隨x的增大而增大.三、解答題(共8題,共72分)17、(1);(2)(,0)或【解析】

(1)把A點坐標代入直線解析式可求得n的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(x,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于x的方程,解方程可求得P點的坐標.【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標代入y=,得k=6,則雙曲線解析式為y=.(2)對于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標為或.18、(x﹣y)2;2.【解析】

首先利用多項式的乘法法則以及多項式與單項式的除法法則計算,然后合并同類項即可化簡,然后代入數(shù)值計算即可.【詳解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,當x=2028,y=2時,原式=(2028﹣2)2=(﹣2)2=2.【點睛】本題考查的是整式的混合運算,正確利用多項式的乘法法則以及合并同類項法則是解題的關鍵.19、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質等,掌握等底高三角形的性質是解題的關鍵.20、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據(jù)“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;(2)根據(jù)利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據(jù)二次函數(shù)的最值問題解答;(3)先由(2)中所求得的P與x的函數(shù)關系式,根據(jù)這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(jù)(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數(shù)的應用.21、(1)4,;(2)旋轉后的正方形與原正方形的重疊部分的面積為;(3).【解析】

(1)連接AB,根據(jù)△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標,則得出正方形AOBC的面積;

(2)根據(jù)旋轉的性質可得OA′的長,從而得出A′C,A′E,再求出面積即可;

(3)根據(jù)P、Q點在不同的線段上運動情況,可分為三種列式①當點P、Q分別在OA、OB時,②當點P在OA上,點Q在BC上時,③當點P、Q在AC上時,可方程得出t.【詳解】解:(1)連接AB,與OC交于點D,四邊形是正方形,

∴△OCA為等腰Rt△,∴AD=OD=OC=2,

∴點A的坐標為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點順時針旋轉,∴點落在軸上.∴.∴點的坐標為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉后的正方形與原正方形的重疊部分的面積為.(3)設t秒后兩點相遇,3t=16,∴t=①當點P、Q分別在OA、OB時,∵,OP=t,OQ=2t∴不能為等腰三角形②當點P在OA上,點Q在BC上時如圖2,當OQ=QP,QM為OP的垂直平分線,

OP=2OM=2BQ,OP=t,BQ=2t-4,

t=2(2t-4),

解得:t=.③當點P、Q在AC上時,不能為等腰三角形綜上所述,當時是等腰三角形【點睛】此題考查了正方形的性質,等腰三角形的判定以及旋轉的性質,是中考壓軸題,綜合性較強,難度較大.22、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)矩形的性質得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質得到∠E=∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論