安徽省石臺縣2023年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第1頁
安徽省石臺縣2023年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第2頁
安徽省石臺縣2023年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第3頁
安徽省石臺縣2023年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第4頁
安徽省石臺縣2023年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年八下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,兩把完全一樣的直尺疊放在一起,重合的部分構(gòu)成一個四邊形,這個四邊形一定是()A.矩形 B.菱形 C.正方形 D.無法判斷2.若關(guān)于x的方程x2+5x+a=0有一個根為﹣2,則a的值是()A.6 B.﹣6 C.14 D.﹣143.若,則的取值范圍是()A. B. C. D.4.我們知道正五邊形不能進(jìn)行平面鑲嵌,若將三個全等的正五邊形按如圖所示拼接在一起,那么圖中的∠1的度數(shù)是()A.18° B.30° C.36° D.54°5.在菱形中,,邊上的高為()A. B. C. D.6.已知菱形ABCD中,對角線AC與BD交于點O,∠BAD=120°,AC=4,則該菱形的面積是()A.16 B.16 C.8 D.87.梅凱種子公司以一定價格銷售“黃金1號”玉米種子,如果一次購買10千克以上(不含l0千克)的種子,超過l0千克的那部分種子的價格將打折,并依此得到付款金額y(單位:元)與一次購買種子數(shù)量x(單位:千克)之間的函數(shù)關(guān)系如圖所示.下列四種說法:①一次購買種子數(shù)量不超過l0千克時,銷售價格為5元/千克;②一次購買30千克種子時,付款金額為100元;③一次購買10千克以上種子時,超過l0千克的那部分種子的價格打五折:④一次購買40千克種子比分兩次購買且每次購買20千克種子少花25元錢.其中正確的個數(shù)是A.1個 B.2個 C.3個 D.4個8.已知關(guān)于的一次函數(shù)的圖象如圖所示,則實數(shù)的取值范圍為()A. B. C. D.9.如圖,點A在雙曲線y=4x上,點B在雙曲線y=kxk≠0,AB//x軸,分別過點A、B向x軸作垂線,垂足分別為D、C.若矩形ABCDA.12 B.10 C.8 D.610.若關(guān)于x的方程的解為正數(shù),則m的取值范圍是A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠811.若y=(m﹣2)x+(m2﹣4)是正比例函數(shù),則m的取值是()A.2 B.﹣2 C.±2 D.任意實數(shù)12.小黃在自家種的西瓜地里隨意稱了10個西瓜,重量(單位:斤)分別是:5,8,6,8,10,1,1,1,7,1.按市場價西瓜每斤2元的價格計算,你估算一下,小黃今天賣了350個西瓜約收入()A.160元 B.700元 C.5600 D.7000二、填空題(每題4分,共24分)13.如圖是甲、乙兩名射由運動員的10次射擊訓(xùn)練成績的折線統(tǒng)計圖觀察圖形,比較甲、乙這10次射擊成績的方差S甲2、S乙2的大?。篠甲2____S乙2(填“>”、“<”或“=”)14.矩形中,對角線交于點,,則的長是__________.15.某校組織演講比賽,從演講主題、演講內(nèi)容、整體表現(xiàn)三個方面對選手進(jìn)行評分.評分規(guī)則按主題占,內(nèi)容占,整體表現(xiàn)占,計算加權(quán)平均數(shù)作為選手的比賽成績.小強的各項成績?nèi)绫恚谋荣惓煽優(yōu)開_分.主題內(nèi)容整體表現(xiàn)85929016.甲、乙兩人進(jìn)行射擊測試,每人射擊10次.射擊成績的平均數(shù)相同,射擊成績的方差分別為S甲2=5,S乙2=3.5,則射擊成績比較穩(wěn)定的是_____(填“甲”或“乙“).17.若是正整數(shù),則整數(shù)的最小值為__________________。18.函數(shù)中,自變量的取值范圍是.三、解答題(共78分)19.(8分)如圖1,P為△ABC內(nèi)一點,連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個三角形與△ABC相似,那么就稱P為△ABC的自相似點.(1)如圖2,已知Rt△ABC中,∠ACB=90°,CD是AB上的中線,過點B作BE⊥CD,垂足為E,試說明E是△ABC的自相似點.(2)如圖3,在△ABC中,∠A<∠B<∠C.若△ABC的三個內(nèi)角平分線的交點P是該三角形的自相似點,求該三角形三個內(nèi)角的度數(shù).20.(8分)先化簡,再求值:,其中21.(8分)在平面直角坐標(biāo)系,直線y=2x+2交x軸于A,交y軸于D,(1)直接寫直線y=2x+2與坐標(biāo)軸所圍成的圖形的面積(2)以AD為邊作正方形ABCD,連接AD,P是線段BD上(不與B,D重合)的一點,在BD上截取PG=,過G作GF垂直BD,交BC于F,連接AP.問:AP與PF有怎樣的數(shù)量關(guān)系和位置關(guān)系?并說明理由;(3)在(2)中的正方形中,若∠PAG=45°,試判斷線段PD,PG,BG之間有何關(guān)系,并說明理由.22.(10分)解方程①2x(x-1)=x-1;②(y+1)(y+2)=223.(10分)如圖,矩形ABCD中,AB=9,AD=4.E為CD邊上一點,CE=6.點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE.設(shè)點P運動的時間為t秒.(1)求AE的長;(2)當(dāng)t為何值時,△PAE為直角三角形;(3)是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請說明理由.24.(10分)如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對角線AC,BD交于點O,DE平分∠ADC交BC于點E,連接OE(1)求證:四邊形ABCD是矩形;(2)若AB=2,求△OEC的面積.25.(12分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.(1)BD與CD有什么數(shù)量關(guān)系,并說明理由;(2)當(dāng)△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.26.某天,小明來到體育館看球賽,進(jìn)場時,發(fā)現(xiàn)門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.下圖中線段、分別表示父、子倆送票、取票過程中,離體育館的路程(米)與所用時間(分鐘)之間的函數(shù)關(guān)系,結(jié)合圖象解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):(1)求點的坐標(biāo)和所在直線的函數(shù)關(guān)系式(2)小明能否在比賽開始前到達(dá)體育館

參考答案一、選擇題(每題4分,共48分)1、B【解析】

作DF⊥BC,BE⊥CD,先證四邊形ABCD是平行四邊形.再證Rt△BEC≌Rt△DFC,得,BC=DC,所以,四邊形ABCD是菱形.【詳解】如圖,作DF⊥BC,BE⊥CD,由已知可得,AD∥BC,AB∥CD∴四邊形ABCD是平行四邊形.在Rt△BEC和Rt△DFC中∴Rt△BEC≌Rt△DFC,∴BC=DC∴四邊形ABCD是菱形.故選B【點睛】本題考核知識點:菱形的判定.解題關(guān)鍵點:通過全等三角形證一組鄰邊相等.2、A【解析】

根據(jù)一元二次方程的解的定義,把x=-2代入方程得到關(guān)于a的一次方程,然后解此一次方程即可.【詳解】解:把x=﹣2代入方程x2+5x+a=0得4﹣5×2+a=0,解得a=1.故選A.【點睛】本題考查了一元二次方程的解,熟練掌握“有根必代原則”是解題的關(guān)鍵.3、D【解析】

根據(jù)分式的概念可知使分式有意義的條件為a≠0,根據(jù)二次根式被開方數(shù)大于等于0可知,使該等式成立的條件為a>0且1-a≥0,故a的取值范圍是0<a≤1.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考査二次根式的概念和分式的概念,需注意在任何時候都要考慮分母不為0,這也是本題最容易出錯的地方.4、C【解析】

正多邊形鑲嵌有三個條件限制:①邊長相等;②頂點公共;③在一個頂點處各正多邊形的內(nèi)角之和為360°.多邊形內(nèi)角和定理:(n-2)?180(n≥3)且n為整數(shù)).【詳解】解:正五邊形的內(nèi)角:(5-2)×180°÷5=108°,∴∠1=360°-108°×3=36°,故選:C.【點睛】此題考查平面鑲嵌,熟練運用多邊形內(nèi)角和公式是解題的關(guān)鍵.5、C【解析】

先求出對角線BD長,利用菱形的面積等于對角線乘積的一半和底乘以高求解BC邊上的高.【詳解】解:設(shè)AC與BD交于點O,

∵四邊形ABCD是菱形,

∴AO⊥BO,且AC=2AO,BD=2BO.

在Rt△AOB中利用勾股定理可得BO==1.

∴BD=2BO=2.

∴菱形的面積為BD×AC=×6×2=21.

設(shè)BC變上的高為h,則BC×h=21,即5h=21,h=1.2.

故選C.【點睛】本題考查菱形的性質(zhì),解題的關(guān)鍵是掌握菱形面積的兩種計算方法.6、C【解析】

根據(jù)四邊形ABCD是菱形,且∠BAD=120°可知∠ABC=60°,AB=AC,即△ABC為等邊三角形,則AB=AC=BC=4,作AE⊥BC于點E,可得BE=2,AE=,求得S菱形ABCD=BC·AE=4×=【詳解】在菱形ABCD中,有AB=AC∵∠BAD=120°∴∠ABC=60°∴△ABC為等邊三角形即AB=AC=BC=4作AE⊥BC于點E∴BE=2,AE=∴S菱形ABCD=BC·AE=4×=故選C【點睛】本題考查了菱形的性質(zhì),,等邊三角形的判定,30°,60°,90°角三角形的邊長關(guān)系,解本題的關(guān)鍵是發(fā)現(xiàn)圖中的等邊三角形,將對角線長度轉(zhuǎn)化為菱形邊長.7、D【解析】①由圖可知,購買10千克種子需要50元,由此求出一次購買種子數(shù)量不超過10千克時的銷售價格;②由圖可知,超過10千克以后,超過的那部分種子的單價降低,而由購買50千克比購買10千克種子多付100元,求出超過10千克以后,超過的那部分種子的單價,再計算出一次購買30千克種子時的付款金額;③根據(jù)一次購買10千克以上種子時,超過10千克的那部分種子的價格為2.5元/千克,而2.5÷5=0.5,所以可以求出打的折數(shù);④先求出一次購買40千克種子的付款金額為125元,再求出分兩次購買且每次購買20千克種子的付款金額為150元,然后用150減去125,即可求出一次購買40千克種子比分兩次購買且每次購買20千克種子少花的錢數(shù).解:①由圖可知,一次購買種子數(shù)量不超過10千克時,銷售價格為:50÷10=5元/千克,正確;②由圖可知,超過10千克的那部分種子的價格為:(150-50)÷(50-10)=2.5元/千克,所以,一次購買30千克種子時,付款金額為:50+2.5×(30-10)=100元,正確;③由于一次購買10千克以上種子時,超過10千克的那部分種子的價格為2.5元/千克,而2.5÷5=0.5,所以打五折,正確;④由于一次購買40千克種子需要:50+2.5×(40-10)=125元,分兩次購買且每次購買20千克種子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次購買40千克種子比分兩次購買且每次購買20千克種子少花25元錢,正確.故選D.8、B【解析】

由一次函數(shù)y=(1-m)x+2的圖象不經(jīng)過第四象限,則1-m>0,通過解不等式可得到m的取值范圍.【詳解】∵關(guān)于x的一次函數(shù)y=(1-m)x+2的圖象不經(jīng)過第四象限,∴1-m>0,解得,.故選B..【點睛】本題考查了一次函數(shù)y=kx+b(k≠0,k,b為常數(shù))的性質(zhì).它的圖象為一條直線,當(dāng)k>0,圖象經(jīng)過第一,三象限,y隨x的增大而增大;當(dāng)k<0,圖象經(jīng)過第二,四象限,y隨x的增大而減小;當(dāng)b>0,圖象與y軸的交點在x軸的上方;當(dāng)b=0,圖象過坐標(biāo)原點;當(dāng)b<0,圖象與y軸的交點在x軸的下方.9、A【解析】

首先得出矩形EODA的面積為:4,利用矩形ABCD的面積是8,則矩形EOCB的面積為:4+8=1,再利用xy=k求出即可.【詳解】過點A作AE⊥y軸于點E,∵點A在雙曲線y=4∴矩形EODA的面積為:4,∵矩形ABCD的面積是8,∴矩形EOCB的面積為:4+8=1,則k的值為:xy=k=1.故選A.【點睛】此題主要考查了反比例函數(shù)關(guān)系k的幾何意義,得出矩形EOCB的面積是解題關(guān)鍵.10、C【解析】

原方程化為整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,∵原方程的解為正數(shù),∴2﹣>0,解得m<6,又∵x﹣2≠0,∴2﹣≠2,即m≠0.故選C.【點睛】本題主要考查分式方程與不等式,解此題的關(guān)鍵在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能為0.11、B【解析】

正比例函數(shù)的一般式y(tǒng)=kx,k≠0,所以使m2-4=0,m-2≠0即可得解.【詳解】由正比例函數(shù)的定義可得:m2-4=0,且m-2≠0,解得,m=-2;故選B.12、C【解析】

先計算出樣本數(shù)據(jù)的平均數(shù),再用這個平均數(shù)×2×350計算即可.【詳解】解:10個西瓜的平均數(shù)是:(5+8+6+8+10+1+1+1+7+1)÷10=8(斤),則這350個西瓜約收入是:8×2×350=5600元.故選:C.【點睛】本題考查了平均數(shù)的計算和利用樣本估計總體的思想,屬于基本題型,熟練掌握平均數(shù)的計算方法和利用樣本估計總體的思想是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、<【解析】

利用折線統(tǒng)計圖可判斷乙運動員的成績波動較大,然后根據(jù)方差的意義可得到甲乙的方差的大小.【詳解】解:由折線統(tǒng)計圖得乙運動員的成績波動較大,所以S甲2<S乙2故選<【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.也考查了方差的意義.14、【解析】

根據(jù)矩形的對角線互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的長和AC的長,然后根據(jù)矩形的對角線互相平分可得AO的長。【詳解】解:如圖,在矩形ABCD中,OA=OC,∵∠AOB=60°,∠ABC=90°∴∠BAC=30°∴AC=2BC設(shè)BC=x,則AC=2x∴解得x=,則AC=2x=2∴AO==.【點睛】本題考查了矩形的對角線互相平分且相等的性質(zhì)和含30°的直角三角形的性質(zhì),以及勾股定理的應(yīng)用,是基礎(chǔ)題。15、1【解析】

根據(jù)加權(quán)平均數(shù)的計算公式列式計算可得.【詳解】解:根據(jù)題意,得小強的比賽成績?yōu)椋蚀鸢笧?.【點睛】本題考查了加權(quán)平均數(shù)的計算方法,在進(jìn)行計算時候注意權(quán)的分配,另外還應(yīng)細(xì)心,否則很容易出錯.16、乙.【解析】

根據(jù)方差反應(yīng)了數(shù)據(jù)的波動情況,即可完成作答?!驹斀狻拷猓阂驗镾甲2=5>S乙2=3.5,即乙比較穩(wěn)定,故答案為:乙?!军c睛】本題考查了方差在數(shù)據(jù)統(tǒng)計中的作用,即方差是反映數(shù)據(jù)波動大小的量。17、1.【解析】

是正整數(shù),則1n一定是一個完全平方數(shù),即可求出n的最小值.【詳解】解:∵是正整數(shù),∴1n一定是一個完全平方數(shù),∴整數(shù)n的最小值為1.故答案是:1.【點睛】本題考查了二次根式的定義,理解是正整數(shù)的條件是解題的關(guān)鍵.18、x≠1【解析】,x≠1三、解答題(共78分)19、(1)詳見解析;(2)【解析】

(1)根據(jù)已知條件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出結(jié)論;

(2)根據(jù)∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各內(nèi)角的度數(shù).【詳解】解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中線,

∴CD=AB,

∴CD=BD,

∴∠BCE=∠ABC,

∵BE⊥CD,∴∠BEC=90°,

∴∠BEC=∠ACB,

∴△BCE∽△ABC,

∴E是△ABC的自相似點;

(2)∵P是△ABC的內(nèi)心,∴∠PBC=∠ABC,∠PCB=∠ACB,

∵△ABC的內(nèi)心P是該三角形的自相似點,∴△BCP∽△ABC

∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,

∴∠A+2∠A+4∠A=180°,

∴∠A=,

∴該三角形三個內(nèi)角度數(shù)為:,,.【點睛】本題考查了相似三角形的判定以及三角形的內(nèi)心作法和作一角等于已知角,此題綜合性較強,注意從已知分析獲取正確的信息是解決問題的關(guān)鍵.20、-2【解析】試題分析:先化簡,再將x的值代入計算即可.試題解析:原式==+1=當(dāng)x=時,原式==-221、(1)1;(1)AP=PF且AP⊥PF,理由見解析;(3)PD1+BG1=PG1,理由見解析【解析】

(1)先根據(jù)一次函數(shù)解析式求出A,D的坐標(biāo),根據(jù)三角形的面積公式即可求解;(1)過點A作AH⊥DB,先計算出AD=,根據(jù)正方形的性質(zhì)得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,則PH=BG,可證得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;(3)把△AGB繞點A點逆時針旋轉(zhuǎn)90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,則∠MDP=90°,根據(jù)勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易證得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.【詳解】(1)∵直線y=1x+1交x軸于A,交y軸于D,令x=0,解得y=1,∴D(0,1)令y=0,解得x=-1,∴A(-1,0)∴AO=1,DO=1,∴直線y=1x+1與坐標(biāo)軸所圍成的圖形△AOD=×1×1=1;(1)AP=PF且AP⊥PF,理由如下:過點A作AH⊥DB,如圖,∵A(-1,0),D(0,1)∴AD===AB,∵四邊形ABCD是正方形∴BD==,∴AH=DH=BD=,而PG=,∴DP+BG=,而DH=DP+PH=∴PH=BG,∵∠GBF=45°∴BG=GF=HP∴Rt△APH≌Rt△PFG,∴AP=PF,∠PAH=∠PFG∴∠APH+∠GPF=90°即AP⊥PF;(3)PD1+BG1=PG1,理由如下:如圖,把△AGB繞點A點逆時針旋轉(zhuǎn)90°得到△AMD,連接MP,∴∠MDA=∠ABG=45°,DM=BG,∠MAD=∠BAG,AM=AG,∴∠MDP=90°,∴DP1+BG1=PM1,又∵∠PAG=45°,∴∠DAP+∠BAG=45°,∴∠MAD+∠DAP=45°,即∠MAP=45°,而AM=AG,∴△AMP≌△AGP,∴MP=PG,∴PD1+BG1=PG1【點睛】此題主要考查一次函數(shù)與正方形的性質(zhì)綜合,解題的關(guān)鍵是熟知一次函數(shù)的圖像與性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì).22、(1)x1=1,x2=;(2)y1=0,y2=-3【解析】【分析】()用因式分解法求解;(2)先去括號整理,再用因式分解法求解.【詳解】解:①2x(x-1)=x-1(2x-1)(x-1)=0所以,2x-1=0或x-1=0所以,x1=1,x2=;②(y+1)(y+2)=2y2+3y=0y(y+3)=0所以,y=0或y+3=0所以,y1=0,y2=-3【點睛】本題考核知識點:解一元二次方程.解題關(guān)鍵點:用因式分解法解方程.23、(1)5;(2)6或;(3)存在,t=,理由見解析【解析】

(1)在直角△ADE中,利用勾股定理進(jìn)行解答;(2)需要分類討論:AE為斜邊和AP為斜邊兩種情況下的直角三角形;(3)假設(shè)存在.利用角平分線的性質(zhì),平行線的性質(zhì)以及等量代換推知:∠PEA=∠EAP,則PE=PA,由此列出關(guān)于t的方程,通過解方程求得相應(yīng)的t的值即可.【詳解】解:(1)∵矩形ABCD中,AB=9,AD=4,∴CD=AB=9,∠D=90°,∴DE=9﹣6=3,∴AE==5;(2)①若∠EPA=90°,BP=CE=6,∴t=6;②若∠PEA=90°,如圖,過點P作PH⊥PH⊥CD于H,∵四邊形ABCD是矩形,∴∠B=∠C=90°,∴四邊形BCHP是矩形,∴CH=BP=t,PH=BC=4,∴HE=CE-CH=6-t,在Rt△PHE中,PE2=HE2+PH2=(6-t)2+42,∵∠PEA=90°,在Rt△PEA中,根據(jù)勾股定理得,PE2+AE2=AP2,∴(6-t)2+42+52=(9-t)2,,解得t=.綜上所述,當(dāng)t=6或t=時,△PAE為直角三角形;(3)假設(shè)存在.∵EA平分∠PED,∴∠PEA=∠DEA.∵CD∥AB,∴∠DEA=∠EAP,∴∠PEA=∠EAP,∴PE=PA,∴,解得t=.∴滿足條件的t存在,此時t=.【點睛】此題是四邊形綜合題,主要考查了矩形的判定和性質(zhì),勾股定理,解一元二次方程,用勾股定理建立方程是解本題的關(guān)鍵.24、(1)證明見解析;(2)1.【解析】分析:(1)只要證明三個角是直角即可解決問題;(2)作OF⊥BC于F.求出EC、OF的長即可;詳解:(1)證明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四邊形ABCD是矩形.(2)作OF⊥BC于F.∵四邊形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面積=?EC?OF=1.點睛:本題考查矩形的判定和性質(zhì)、角平分線的定義、三角形中位線定理等知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論