空間距離公式及距離問題_第1頁
空間距離公式及距離問題_第2頁
空間距離公式及距離問題_第3頁
空間距離公式及距離問題_第4頁
空間距離公式及距離問題_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

空間距離公式及距離問題第一頁,共十頁,編輯于2023年,星期日長a,寬b,高c的長方體的對角線,怎么求?第二頁,共十頁,編輯于2023年,星期日在空間直角坐標(biāo)系中點O(0,0,0)到點P(x0,y0,z0)的距離,怎么求?第三頁,共十頁,編輯于2023年,星期日OPzyxx0y0z0在空間直角坐標(biāo)系中點P(x,y,z)到點xOy平面的距離,怎么求?第四頁,共十頁,編輯于2023年,星期日在空間直角坐標(biāo)系中,P(x0,y0,z0)到坐標(biāo)軸的距離,怎么求?第五頁,共十頁,編輯于2023年,星期日在空間直角坐標(biāo)系中,點P(x1,y1,z1)和點Q(x2,y2,z2)的距離,怎么求?分析:通過類比——空間兩點距離公式第六頁,共十頁,編輯于2023年,星期日例:求點P(1,2,-2)和Q(-1,0,-1)之間的距離。例:空間直角坐標(biāo)系中,在x軸找一個點P,使它與點P0(4,1,2)的距離為例:在xOy平面內(nèi)的直線x+y=1上確定一點M。使M到點N(6,5,1)的距離最小。第七頁,共十頁,編輯于2023年,星期日例:設(shè)A(3,3,1),B(1,-1,5),C(0,1,0),則AB的中點M到C的距離為_________第八頁,共十頁,編輯于2023年,星期日例:如圖:M—OAB是棱長為a的正四面體,頂點M在底面OAB上的射影為H,分別求出點B、H、M的坐標(biāo)MAHBOzxy第九頁,共十頁,編輯于2023年,星期日小結(jié):1、會畫空間直角坐標(biāo)系

2、根據(jù)坐標(biāo)描點,根據(jù)點求坐標(biāo)

3、對稱點

4、距離公式、中點公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論