版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
課標(biāo)分析1.反比例函數(shù)是《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)》“數(shù)與代數(shù)”領(lǐng)域的內(nèi)容,是本套教科書安排的最后一類函數(shù).其學(xué)習(xí)基礎(chǔ)是函數(shù)的概念、函數(shù)的表示方法以及兩個量的反比例關(guān)系;學(xué)習(xí)中可以類比正比例函數(shù)、一次函數(shù)和二次函數(shù)的研究方法,在對反比函數(shù)的概念、圖象、性質(zhì)學(xué)習(xí)基礎(chǔ)上進行應(yīng)用.本節(jié)重點研究的是反例函數(shù)在實際問題中的應(yīng)用.2.現(xiàn)實世界中存在大量成反比例關(guān)系的問題,這為結(jié)合具體情境體會反比例函數(shù)的意義提供了豐富的素材.本節(jié)選取了四個不同背景的實際問題:(1)當(dāng)圓柱體的體積一定時,圓柱的底面積和高成反比例關(guān)系;(2)當(dāng)工作量一定時,工作時間和工作效率成反比例關(guān)系;呈現(xiàn)的模式都是先給出具體的問題情境,然后把這些問題抽象為數(shù)學(xué)模型──反比例函數(shù),并根據(jù)已知條件確定這些反比例函數(shù)的表達式,然后運用反比例函數(shù)的性質(zhì)解決這些問題.通過這些問題的解決,進一步加深對反比例函數(shù)的認識,培養(yǎng)學(xué)生運用數(shù)學(xué)知識分析解決問題的能力.學(xué)情分析學(xué)生已經(jīng)有了反比例函數(shù)的概念及其圖象與性質(zhì)這些知識基礎(chǔ),另外在小學(xué)也學(xué)過反比例,并且上學(xué)期已經(jīng)學(xué)習(xí)了正比例函數(shù)、一次函數(shù),因此學(xué)生已經(jīng)有了一定的知識準(zhǔn)備。但由于所教學(xué)生都是農(nóng)村學(xué)生,信息掌握程度不高,知識面較窄,語言表達能力較差,因此,本節(jié)課教師更換了例題,使學(xué)生從身邊事物入手,真正體會到數(shù)學(xué)知識來源于生活,有一種親切感。在學(xué)習(xí)中要讓學(xué)生經(jīng)歷實踐、思考、表達與交流的過程,給學(xué)生留下充足的時間來活動,不斷引導(dǎo)學(xué)生利用數(shù)學(xué)知識來解決實際問題。練習(xí)題1、小林家離工作單位的距離為3600米,他每天騎自行車上班時的速度為v(米/分),所需時間為t(分)(1)則速度v與時間t之間有怎樣的函數(shù)關(guān)系?(2)若小林到單位用15分鐘,那么他騎車的平均速度是多少?(3)如果小林騎車的速度為300米/分,那他需要幾分鐘到達單位2.已知一個長方體的體積是100立方厘米,它的長是ycm,寬是5cm,高是xcm.(1)
寫出用高表示長的函數(shù)式;(2)
寫出自變量x的取值范圍;(3)
當(dāng)x=3cm時,求y的值。3、一定質(zhì)量的氧氣,它的密度ρ(kg/m3)是它的體積V(m3)的反比例函數(shù),當(dāng)V=10m3時,ρ=1.43kg/m3。(1)求ρ與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2m3時求氧氣的密度ρ。4.學(xué)校鍋爐旁建有一個儲煤庫,開學(xué)初購進一批煤,現(xiàn)在知道:按每天用煤0.6噸計算,一學(xué)期(按150天計算)剛好用完.若每天的耗煤量為x噸,那么這批煤能維持y天(1)則y與x之間有怎樣的函數(shù)關(guān)系?(2)若每天節(jié)約0.1噸,則這批煤能維持多少天?
教材分析本節(jié)課是九年級下冊第二十六章第2節(jié)的第1課時,是在前面學(xué)習(xí)了反比例函數(shù)的概念、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上,通過建立反比例函數(shù)模型,解決實際問題的應(yīng)用課.反比例函數(shù)的知識在數(shù)學(xué)及實際生活和生產(chǎn)中經(jīng)常用到,掌握這些知識對學(xué)生參加實踐活動、解決日常生活中的實際問題具有重要的現(xiàn)實意義首先,教材編寫者設(shè)置了一個修建圓柱形煤氣儲存室的問題,即例1.該問題的背景并不復(fù)雜,將其抽象為數(shù)學(xué)問題就是圓柱的體積V、底面積S與高h三個量之間的關(guān)系:V=Sh.本題中體積V是個常數(shù),圓柱的高h就是深度d,底面積S與深度d是反比例關(guān)系.從函數(shù)的觀點看,在關(guān)系式中,S是d的反比例函數(shù),d為自變量.當(dāng)確定時,代入可求得;同樣,當(dāng)一定時,代入可求得S.這個問題中的幾個小問,實際上就是先由體積公式確定函數(shù)關(guān)系式;再由函數(shù)值確定自變量的值,最后由自變量的值求函數(shù)值,運算比較簡單,關(guān)鍵是明確問題中的變量及常量,并能確定各個量之間的關(guān)系,進而寫出它們之間的函數(shù)關(guān)系式,最后運用反比例函數(shù)的有關(guān)性質(zhì)解決問題.隨后教材編寫者又設(shè)置了一個貨物裝卸問題,即例2.但是例2與例1在給定條件時有所不同.在例1中,明確給出了圓柱體的體積,即反比例函數(shù)中的常數(shù)k,這樣可以較為方便地列出反比例函數(shù)關(guān)系式;而例2中沒有直接給出比例函數(shù)中的常數(shù)k,這就需要首先通過運算,即用每天的裝物量與裝貨天數(shù)的乘積求得輪船上的貨物總量,從而確定反比例函數(shù)中的比例系數(shù)k.另外,例2與例1的第二個不同點在于,例2的第(2)問涉及不等關(guān)系,教科書的處理方式是把這個不等關(guān)系轉(zhuǎn)化為相等關(guān)系來解決,降低了問題的難度,同時強化了反比例函數(shù)的性質(zhì).實際上,很多不等問題都可以轉(zhuǎn)化為相等問題來解決,然后再根據(jù)問題的指向,得到問題的答案.不等關(guān)系與相等關(guān)系之間的相互轉(zhuǎn)化為我們提供了解題思路.教學(xué)中教師應(yīng)該關(guān)注學(xué)生的不同解法,例如學(xué)生如果運用不等關(guān)系解決,可以先把解析式變形為,根據(jù)已知條件,可列出不等式,雖然這種分式不等式并非常見,但根據(jù)不等式的性質(zhì),可化為,進而解得.教師應(yīng)該鼓勵學(xué)生的這一做法,同時強調(diào)兩種方法,都是對反比例函數(shù)性質(zhì)的運用,雖然解題途徑有所不同,但同樣可以順利解決問題.本節(jié)課的教學(xué)重點是,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,運用反比例函數(shù)的概念、性質(zhì)分析和解決一些簡單的實際問題;教學(xué)難點應(yīng)該是,將實際問題中變量間的反比例關(guān)系抽象為反比例函數(shù),并能利用反比例函數(shù)的性質(zhì)分析解決實際問題.教學(xué)目標(biāo)1、知識與技能
1)運用反比例函數(shù)的概念和性質(zhì)解決實際問題。
2)利用反比例函數(shù)求出問題中的值。
2、過程與方法
在運用反比例函數(shù)解決實際問題的過程中,進一步體會數(shù)學(xué)建模思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,在“實際問題—建立模型—拓展應(yīng)用”的過程中,發(fā)展學(xué)生分析問題,解決問題的能力。
3、情感態(tài)度與價值觀在運用反比例函數(shù)解決實際問題的過程中,體驗數(shù)學(xué)的實用性,提高學(xué)生
學(xué)習(xí)數(shù)學(xué)的興趣,同時也培養(yǎng)了學(xué)生合作交流的意識。教學(xué)重難點教學(xué)重點:運用反比例函數(shù)的意義和性質(zhì)解決實際問題。
難點:把實際問題轉(zhuǎn)化為反比例函數(shù)這一數(shù)學(xué)模型。教學(xué)過程一、復(fù)習(xí)鞏固,情景導(dǎo)入
師:請同學(xué)們認真思考,完成下列問題。列函數(shù)關(guān)系式表示下列數(shù)量關(guān)系1、京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為
2、完成某項任務(wù)可獲得500元報酬,考慮由x人完成這項任務(wù),試寫出人均報酬y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式
3、某住宅小區(qū)要種植一個面積為1000的矩形草坪,草坪的長y隨寬x的變化而變化;。4、已知北京市的總面積為168平方千米,人均占有的土地面積s隨全市總?cè)丝趎的變化而變化;。5、已知反比例函數(shù)y=,當(dāng)x=2時,y=2;當(dāng)y=2時,x=2。生:學(xué)生自主完成,而后大家一起交流,分享解題感悟。根據(jù)上面幾個問題的練習(xí)鋪墊,教師引出這節(jié)課的主要內(nèi)容,實際問題與反比例函數(shù),(板書課題)二、知識應(yīng)用,典例分析例1、市煤氣公司要在地下修建一個容積為104m3的圓柱形煤氣儲存室.(1)儲存室的底面積S(單位:m2)與其深度d(單位:m)有怎樣的函數(shù)關(guān)系?(2)公司決定把儲存室的底面積S定為500m2,施工隊施工時應(yīng)該向下掘進多深?(3)當(dāng)施工隊按(2)中的計劃掘進到地下15m時,碰上了堅硬的巖石.為了節(jié)約建設(shè)資金,儲存室的底面積應(yīng)改為多少才能滿足需要(保留兩位小數(shù))?
生:學(xué)生自主學(xué)習(xí),小組交流,合作分享,師:引導(dǎo)、解決學(xué)生普遍存在的問題,達到對知識的理解,問題的解決。例2、碼頭工人以每天30噸的速度往一艘輪船裝載貨物,把輪船裝載完畢恰好用了8天時間.(1)輪船到達目的地后開始卸貨,卸貨速度v(單位:噸/天)與卸貨時間t(單位:天)之間有怎樣的關(guān)系?(2)由于遇到緊急情況,船上的貨物必須在不超過5日內(nèi)卸完,那么平均每天至少要卸多少噸貨物?分析:(1)根據(jù)裝貨速度×裝貨時間=貨物的總量,可以求出輪船裝載貨物的總量;(2)再根據(jù)卸貨速度=貨物總量÷卸貨時間,得到v與t的函數(shù)式。三、當(dāng)堂訓(xùn)練,鞏固新知1、小林家離工作單位的距離為3600米,他每天騎自行車上班時的速度為v(米/分),所需時間為t(分)(1)則速度v與時間t之間有怎樣的函數(shù)關(guān)系?(2)若小林到單位用15分鐘,那么他騎車的平均速度是多少?(3)如果小林騎車的速度為300米/分,那他需要幾分鐘到達單位?分析:(1)根據(jù)速度、時間、路程的關(guān)系即可寫出函數(shù)的關(guān)系式;(2)把t=15代入函數(shù)的解析式,即可求得速度;(3)把v=300代入函數(shù)解析式,即可求得時間。解:(1)反比例函數(shù)(2)把t=15代入函數(shù)的解析式,得:答:他騎車的平均速度是:240米/分;(3)把v=300代入函數(shù)解析式得:解得:t=12。。答:他至少需要12分鐘到達單位。點評:本題考查了反比例函數(shù)的應(yīng)用,正確理解反比例函數(shù)關(guān)系是關(guān)鍵。2.已知一個長方體的體積是100立方厘米,它的長是ycm,寬是5cm,高是xcm.(1)
寫出用高表示長的函數(shù)式;(2)
寫出自變量x的取值范圍;(3)
當(dāng)x=3cm時,求y的值。分析:(1)根據(jù)長方形的體積公式V=長×寬×高,可知道用高表示長的函數(shù)式;(2)高是非負數(shù)所以x>0;(3)直接把x=3代入解析式求解即可;解:(1)由題意得:長方體的體積V=y×5×x=100,∴用高表示長的函數(shù)式(2)自變量x的取值范圍x>0;(3)當(dāng)x=3時,點評:主要考查了反比例函數(shù)的應(yīng)用.解題的關(guān)鍵是根據(jù)實際意義列出函數(shù)關(guān)系式,要注意根據(jù)實際意義求自變量x的取值范圍。3、一定質(zhì)量的氧氣,它的密度ρ(kg/m3)是它的體積V(m3)的反比例函數(shù),當(dāng)V=10m3時,ρ=1.43kg/m3。(1)求ρ與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2m3時求氧氣的密度ρ。4.學(xué)校鍋爐旁建有一個儲煤庫,開學(xué)初購進一批煤,現(xiàn)在知道:按每天用煤0.6噸計算,一學(xué)期(按150天計算)剛好用完.若每天的耗煤量為x噸,那么這批煤能維持y天(1)則y與x之間有怎樣的函數(shù)關(guān)系?(2)若每天節(jié)約0.1噸,則這批煤能維持多少天?分析:(1)首先求得煤的總量,然后利用耗煤量乘以天數(shù)等于煤總量可得函數(shù)關(guān)系式即可;(2)將每天的用煤量代入求得的函數(shù)解析式即可求解。四、拓展提高5.某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x元與日銷售量y之間有如下關(guān)系:(1)根據(jù)表中的數(shù)據(jù)在平面直角坐標(biāo)系中描出實數(shù)對(x,y)的對應(yīng)點.(2)猜測并確定y與x之間的函數(shù)關(guān)系式,分析:(1)簡單直接描點即可;(2)要確定y與x之間的函數(shù)關(guān)系式,通過觀察表中數(shù)據(jù),可以發(fā)現(xiàn)x與y的乘積是相同的,都是60,所以可知y與x成反比例,用待定系數(shù)法求解即可;(3)首先要知道純利潤=(銷售單價x-2)×日銷售數(shù)量y,這樣就可以確定w與x的函數(shù)關(guān)系式,然后根據(jù)題目的售價最高不超過10元/張,就可以求出獲得最大日銷售利潤時的日銷售單價x。四、課堂小結(jié)五、課后練習(xí)‘效果分析(1)教學(xué)難點的突破
本節(jié)的難點在于“把實際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決”,課前預(yù)設(shè)通過“師生共分析——分析錯處——再獨立解題”的三個環(huán)節(jié),以達到學(xué)生逐步掌握轉(zhuǎn)化的方法。
(2)教學(xué)重點的落實在探索實際問題與反比例函數(shù)時,教學(xué)活動設(shè)計了學(xué)生通過“現(xiàn)觀察——后歸納——再比較——后小結(jié)”的循環(huán)上升的思維進程進行引導(dǎo),在實際教學(xué)活動中學(xué)生通過自主探索能發(fā)現(xiàn)并歸納,使學(xué)生所學(xué)知識進一步內(nèi)化和系統(tǒng)化。
總之
,學(xué)生是具有學(xué)習(xí)的自主性、探索性、協(xié)作性和實踐性.本節(jié)課是學(xué)生對科學(xué)探索與研究的初步嘗試,但是它對學(xué)生今后的學(xué)習(xí)和15.1分式的意義。
教學(xué)反思上完這節(jié)課,有幾點體會值得一提。首先是我沒有采用教材上的例
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 青年團隊建設(shè)培訓(xùn)方案
- 生活線下監(jiān)督工作方案
- 租賃禮服行業(yè)分析報告
- 家園共育軟件行業(yè)分析報告
- 高薪分配穩(wěn)定工作方案
- 文旅數(shù)字空間建設(shè)方案
- 有色行業(yè)股市分析報告
- 歐洲富人行業(yè)現(xiàn)狀分析報告
- 飲料行業(yè)創(chuàng)新分析報告
- 高盛行業(yè)前景分析報告
- 2025年證券市場交易操作與規(guī)范指南
- 2025-2026學(xué)年北京市西城區(qū)高三(上期)期末考試生物試卷(含答案)
- 2026廣西北部灣大學(xué)公開招聘高層次人才76人筆試參考題庫及答案解析
- 2025年時事政治必考試題庫完整參考答案及參考答案詳解
- 2026年安徽糧食工程職業(yè)學(xué)院單招綜合素質(zhì)考試題庫含答案詳解
- 混凝土施工作業(yè)環(huán)境管理方案
- 2025貴州黔西南州安龍縣選聘城市社區(qū)工作者工作61人備考題庫完整答案詳解
- 淮安市2023-2024學(xué)年七年級上學(xué)期期末歷史試卷(含答案解析)
- 家長要求學(xué)校換老師的申請書
- 闌尾腫瘤-課件
- 正式員工派遣單
評論
0/150
提交評論