版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第10講三角形與全等三角形(壓軸題組)1.(2021·江西贛州·九年級期中)如圖1,在等腰直角三角形ABC中,∠BAC=90°,點E,F(xiàn)分別為AB,AC的中點,H為線段EF上一動點(不與點E,F(xiàn)重合),將線段AH繞點A逆時針方旋轉(zhuǎn)90°,得到AG,連接GC,HB.(1)證明:△AHB≌△AGC(2)如圖2,連接HG和GF,其中HG交AF于點Q.①證明:在點H的運動過程中,總有∠HFG=90°;②若AB=AC=4,當(dāng)EH的長度為多少時,△AQG為等腰三角形?【答案】(1)見詳解;(2)①見詳解;②EH=SKIPIF1<0或SKIPIF1<0;【詳解】(1)證明:∵等腰直角三角形ABC中,∠BAC=90°,∴AB=AC,∵線段AH繞點A逆時針方旋轉(zhuǎn)90°,得到AG,∴AH=AG,∠HAD=90°,∴∠BAH+∠HAF=∠HAF+∠CAG=90°,∴∠BAH=∠CAG,在△ABH和△ABG中,SKIPIF1<0,∴△ABH≌△ABG(SAS),(2)①證明:∵點E,F(xiàn)分別為AB,AC的中點,∴AE=SKIPIF1<0,AF=SKIPIF1<0,EF∥BC,∵AB=AC,∠BAC=90°,∴AE=AF,∠EAF=90°,∴∠AEF=∠AFE=SKIPIF1<0,在△AEH和△AFG中,SKIPIF1<0,∴△AEH≌△AFG(SAS),∴∠AEH=∠AFG=45°,∴∠HFG=∠AFE+∠AFG=45°+45°=90°,∴∠HFG=90°;②解:∵AB=AC=4,∠BAC=90°,根據(jù)勾股定理SKIPIF1<0,∵點E,F(xiàn)分別為AB,AC的中點,∴EF=SKIPIF1<0,∵△AQG為等腰三角形分三種情況當(dāng)AQ=GQ時,∵AH=AG,∠HAG=90°,∴∠AHG=∠AGH=SKIPIF1<0,∴∠QAG=∠QGA=45°,∴∠AQG=180°-∠QAG-∠QGA=90°,∴HG⊥AC,∴∠HAQ=90°-∠QAG=90°-45°=45°,∴∠EAH=90°-∠HAQ=90°-45°=45°,∴AH平分∠EAF,AE=AF,∴EH=HF=SKIPIF1<0當(dāng)AG=GQ=AH,∠AGQ=45°,∴∠GAQ=∠GQA=SKIPIF1<0,∴∠EAH=∠QAG=67.5,∴∠AHE=180°-∠AEH-∠EAH=180°-45°-67.5°=67.5°∴∠EAH=∠EHA=67.5°∴EH=AE=SKIPIF1<0;當(dāng)AQ=QG時,過A作AM⊥HG于M,∵∠AQG是△AQM的外角,∴∠AQG>∠AMQ=90°>∠AGQ=45°,∴AQ=AG不成立.綜合得EH=SKIPIF1<0或2.2.(2021·北京市第三十一中學(xué)九年級期中)四邊形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF.G為DF的中點,連接EG,CG,EC.(1)如圖1,若點E在CB邊的延長線上,直接寫出EG與GC的位置關(guān)系及SKIPIF1<0的值;(2)將圖1中的△BEF繞點B順時針方向旋轉(zhuǎn)至圖2所示位置,在(1)中所得的結(jié)論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;(3)將圖1中的△BEF,繞點B順時針旋轉(zhuǎn)SKIPIF1<0(0°<SKIPIF1<0<90°),若BE=1,AB=SKIPIF1<0,當(dāng)E,F(xiàn),D三點共線時,求DF的長.【答案】(1)EG⊥CG,SKIPIF1<0=SKIPIF1<0,(2)結(jié)論還成立,證明見解析,(3)SKIPIF1<0﹣1.【詳解】解:(1)EG⊥CG,SKIPIF1<0=SKIPIF1<0,延長EG交CD延長線于H,∵EF∥DC,∴∠FEG=∠DHG,在△EFG和△HDG中SKIPIF1<0∴△EFG≌△HDG,∴DH=EF=BE,EG=GH,∵∠DCB=90°,BC=CD,∴CE=CH,∴EG=GC,EG⊥GC,即△EGC是等腰直角三角形,∴SKIPIF1<0=SKIPIF1<0;(2)結(jié)論還成立,理由是:如圖2,延長EG到H,使EG=GH,連接CH、EC,過E作BC的垂線EM,延長CD,∵在△EFG和△HDG中SKIPIF1<0∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,又∵ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中SKIPIF1<0∴△EBC≌△HDC.∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G為EH的中點,∴EG⊥GC,SKIPIF1<0=SKIPIF1<0,(3)連接BD,∵AB=SKIPIF1<0,正方形ABCD,∴BD=2,∵BE=FE=1,∴SKIPIF1<0,∴DF=DE﹣EF=SKIPIF1<0﹣1.3.(2021·湖北青山·九年級期中)已知,在菱形ABCD中,∠BCD=60°,將邊CD繞點C順時針旋轉(zhuǎn)α°(0<α<120),得到線段CE,連接ED、ED或其延長線交∠BCE的角平分線于點F.(1)如圖1,若α=20,直接寫出∠E與∠CFE的度數(shù);(2)如圖2,若60<α<120.求證:EF﹣DF=CF;(3)如圖3,若AB=6,點G為AF的中點,連接BG,則DC旋轉(zhuǎn)過程中,BG的最大值為.
【答案】(1)∠E=80゜,∠CFE=60゜;(2)見解析;(3)SKIPIF1<0【詳解】(1)∵CE由CD繞點C順時針旋轉(zhuǎn)α°而得到∴CE=CD,∠DCE=α゜∴SKIPIF1<0,∠BCE=∠BCD+∠DCE=60゜+α゜當(dāng)α=20時,SKIPIF1<0∵CF平分∠BCE∴SKIPIF1<0在△CFE中,SKIPIF1<0(2))如圖,在EF上取點H,且使EH=DF,連接CH在△CEH和△CDF中SKIPIF1<0∵△CEH≌△CDF∴CH=CF由(1)知,∠CFE=60゜∴△CFH是等邊三角形∴CF=FH∴SKIPIF1<0(3)連接AC、BD、BF,作△BCD的外接圓⊙O,設(shè)⊙O交AC于點M,連接GM、BM,OF∵四邊形ABCD是菱形,∠BCD=60゜∴BC=BD,∴△BCD是等邊三角形∵CF平分∠BCE∴∠BCF=∠ECF∵CB=CD=CE,CF=CF∴△BCF≌△ECF∴∠BFC=∠CFE=60゜∴點F在⊙O上∵AC垂直平分BD∴O點在AC上∵等邊三角形外接圓的半徑為SKIPIF1<0等邊三角形的邊長∴OC=SKIPIF1<0∵菱形ABCD的對角線SKIPIF1<0∴AM=MO=OC=SKIPIF1<0∴SKIPIF1<0∵∠BMC=∠BDC=60゜,∠BAM=30゜∴在△AMB中,∠ABM=30゜∴SKIPIF1<0∵SKIPIF1<0∴BG的最大值為SKIPIF1<0故答案為:SKIPIF1<04.(2021·福建安溪·九年級期中)在等腰直角△ABC中,AB=AC,點D在底邊BC上,∠EDF的兩邊分別交AB、AC所在直線于E、F兩點,∠EDF=2∠ABC,BD=nCD.(1)如圖1,若n=1,則DEDF;(填“>”“<”或“=”)(2)連接EF.①如圖2,沿著直線EF折疊,使得點A落在邊BC上的D點,求SKIPIF1<0的值(含n的式子表示);②如圖3,EFSKIPIF1<0BC,且SKIPIF1<0,求出n的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0【詳解】(1)如圖,連接SKIPIF1<0,SKIPIF1<0△ABC是等腰直角三角形SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0與△BED中SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0△BEDSKIPIF1<0故答案為:=(2)過點SKIPIF1<0作SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是矩形SKIPIF1<0SKIPIF1<0SKIPIF1<0是等腰直角三角形SKIPIF1<0SKIPIF1<0SKIPIF1<0折疊SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)如圖,過點SKIPIF1<0分別作SKIPIF1<0的垂線,垂足分別為SKIPIF1<0,SKIPIF1<0SKIPIF1<0是等腰三角形,SKIPIF1<0SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是平行四邊形SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是矩形SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0解得SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0或SKIPIF1<05.(2021·陜西蓮湖·九年級期中)在菱形ABCD中,∠ABC=60°,P是射線BD上一動點,以AP為邊向右側(cè)作等邊△APE,點E的位置隨著點P的位置變化而變化.問題提出(1)如圖1,當(dāng)點E在菱形ABCD內(nèi)部或邊上時,連接CE,BP與CE的數(shù)量關(guān)系是,CE與CB的位置關(guān)系是.(2)如圖2,當(dāng)點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由.問題解決(3)如圖3,連湖公園有一塊觀賞園林區(qū),其形狀是一個邊長為20m的菱形ABCD,其中∠ABC=60°,對角線BD是一條花間小徑,現(xiàn)計劃在BD延長線上(包括D點)取點P,以AP為邊長修建一個等邊△APE的娛樂區(qū),放置各類運動娛樂設(shè)施,從娛樂區(qū)頂點E再修一條直直的小路BE,為了讓游客們更輕松愉快地游玩,園區(qū)還計劃在BE中點處設(shè)置一個直飲水點F,求飲水點F到C點的最短距離.【答案】(1)SKIPIF1<0;SKIPIF1<0;(2)結(jié)論成立,證明過程見詳解;(3)SKIPIF1<0m【詳解】(1)如圖1中,結(jié)論:SKIPIF1<0,SKIPIF1<0.理由:連接.∵四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0∴△ABC,SKIPIF1<0都是等邊三角形,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴△BAP≌△CAE,∴SKIPIF1<0,SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0SKIPIF1<0.SKIPIF1<0故答案為SKIPIF1<0,SKIPIF1<0.(2)結(jié)論仍然成立.理由:如圖2,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,設(shè)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0.∵四邊形SKIPIF1<0是菱形,SKIPIF1<0,∴△ABC,SKIPIF1<0都是等邊三角形,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴△BAP≌△CAE,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0,(3)根據(jù)題目,為了使SKIPIF1<0到SKIPIF1<0點的距離最短,在SKIPIF1<0固定的情況下,SKIPIF1<0越小,SKIPIF1<0越短,SKIPIF1<0越小,點SKIPIF1<0距離點SKIPIF1<0越小,即SKIPIF1<0邊長越小,即當(dāng)點SKIPIF1<0位于點SKIPIF1<0時,SKIPIF1<0最小,如圖所示:SKIPIF1<0且四邊形SKIPIF1<0為菱形SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0點SKIPIF1<0位于線段SKIPIF1<0上SKIPIF1<0,SKIPIF1<0,則點A為SKIPIF1<0的中點SKIPIF1<0點SKIPIF1<0與點SKIPIF1<0重合SKIPIF1<0SKIPIF1<0,SKIPIF1<0∴△ABC為等邊三角形SKIPIF1<0SKIPIF1<0點SKIPIF1<0到SKIPIF1<0點的最短距離為SKIPIF1<0m.6.(2021·陜西·交大附中分校九年級期中)問題研究,如圖,在等腰△ABC中,SKIPIF1<0,點SKIPIF1<0、SKIPIF1<0為底邊SKIPIF1<0上的兩個動點(不與SKIPIF1<0、SKIPIF1<0重合),且SKIPIF1<0.(1)請在圖中找出一個與SKIPIF1<0相似的三角形,這個三角形是__________;
(2)若SKIPIF1<0,分別過點SKIPIF1<0、SKIPIF1<0作SKIPIF1<0、SKIPIF1<0的垂線,垂足分別為SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0、SKIPIF1<0的反向延長線交于點SKIPIF1<0,若SKIPIF1<0,求四邊形SKIPIF1<0的面積;
問題解決(3)如圖所示,有一個矩形倉庫SKIPIF1<0,其中SKIPIF1<0米,SKIPIF1<0米,現(xiàn)計劃在倉庫的內(nèi)部的SKIPIF1<0、SKIPIF1<0兩處分別安裝監(jiān)控攝像頭,其中點SKIPIF1<0在邊SKIPIF1<0上,點SKIPIF1<0在邊SKIPIF1<0上.設(shè)計要求SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的長應(yīng)為多少米?
【答案】(1)△DAE;(2)四邊形的面積為SKIPIF1<0;(3)CE的長為SKIPIF1<0米.【詳解】解:(1)∵SKIPIF1<0,SKIPIF1<0,∴△DAE∽△ABE,故答案為:△DAE;(2)如圖所示:把△ABD繞點A逆時針旋轉(zhuǎn)SKIPIF1<0得到△ACH,連接EH,
∴△ABD≌△ACH,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在△HAE和△DAE中,SKIPIF1<0,∴△HAE≌△DAE,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0于點G,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,同理可得:SKIPIF1<0,在△DEM中,SKIPIF1<0,∴SKIPIF1<0,同理可得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即四邊形的面積為SKIPIF1<0;(3)如圖,延長AD到S,延長BC到G,使SKIPIF1<0,連接SG,延長AF交SG于點H,連接EH,延長GS到T,使SKIPIF1<0,連接AT,則四邊形ABGS為正方形,
∴SKIPIF1<0,SKIPIF1<0,在△ABE和△AST中,SKIPIF1<0,∴△ABE≌△AST,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,,∴SKIPIF1<0,在△ATH和△AEH中,SKIPIF1<0,∴△ATH≌△AEH,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵DFSKIPIF1<0SH,∴△ADF∽△ASH,∴SKIPIF1<0,即:SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,SKIPIF1<0,∴在Rt△ADF中,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0(舍去),即CE的長為SKIPIF1<0米.7.(2021·黑龍江·哈爾濱市第六十九中學(xué)校九年級期中)如圖,在平面直角坐標(biāo)系中,直線AB的解析式為y=kx+3分別交x軸、y軸于點A、B,∠BAO=45°.(1)求直線AB的解析式;(2)點C在x軸負半軸上,連接CB,過點B作BC的垂線交x軸于點P,設(shè)點P的橫坐標(biāo)為t,△BAP的面積為S,求S與t之間的函數(shù)解析式,(不要求寫出自變量t的取值范圍);(3)在(2)的條件下,延長BC至Q,使BQ=BP,過點Q作x軸的垂線交x軸于點D,點E為線段CQ的中點,過點E作BQ的垂線交BD的延長線與點F,若EF=SKIPIF1<0,求Q點坐標(biāo).【答案】(1)y=-x+3;(2)SKIPIF1<0;(3)Q(-3,-6)【詳解】解:(1)將x=0代入y=kx+3得:y=3,∴OB=3,∵∠BAO=45°,∠BOA=90°,∴∠OBA=90°-∠BAO=45°=∠BAO,∴OA=OB=3,∴點A的坐標(biāo)為(3,0),將x=3,y=0代入y=kx+3得:0=3k+3,解得:k=-1,∴直線AB的解析式為y=-x+3;(2)∵點P的橫坐標(biāo)為t,∴OP=t,∴AP=OP-OA=t-3,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴S與t之間的函數(shù)解析式為SKIPIF1<0;(3)如圖,過點Q作QH⊥y軸于點H,過點F作FM⊥QD于點M,作FN⊥x軸于點N,連接FQ,F(xiàn)C,∵BP⊥BC,∴∠PBC=90°,∴∠PBO+∠QBH=90°,∵QH⊥y軸,∠BOP=90°,∴∠QHB=∠BOP=90°,∴∠PBO+∠BPO=90°,∴∠BPO=∠QBH,在△QBH與△BPO中,SKIPIF1<0,∴△QBH≌△BPO,∴QH=OB=3,∵QH⊥y軸,QD⊥x軸,∠DOH=90°,∴四邊形QDOH為矩形,∴OD=QH=OB=3,又∵∠DOB=90°,∴∠ODB=∠OBD=45°,∴∠FDN=∠ODB=45°,又∵∠QDN=90°,∴∠FDM=90°-∠FDN=45°=∠FDN,∴FD平分∠MDN,又∵FM⊥QD,F(xiàn)N⊥x軸,∴FM=FN,∠FNC=∠FMQ=90°,∵點E為線段CQ的中點,F(xiàn)E⊥CQ,∴FC=FQ,在Rt△FNC與Rt△FMQ中,SKIPIF1<0,∴Rt△FNC≌Rt△FMQ,∴∠NFC=∠MFQ,∴∠NFC+∠MFC=∠MFQ+∠MFC,即∠NFM=∠CFQ,∵∠FNC=∠FMQ=∠MDN=90°,F(xiàn)M=FN,∴四邊形MDNF為正方形,∴∠CFQ=∠NFM=90°,F(xiàn)M=DM,∵∠CFQ=90°,點E為線段CQ的中點,EF=SKIPIF1<0,∴EQ=EC=EF=SKIPIF1<0,∴SKIPIF1<0,∵OD=OB=3,∠DOB=90°,∴SKIPIF1<0,設(shè)FM=DM=m,則SKIPIF1<0,∴SKIPIF1<0,∵∠CFQ=90°,F(xiàn)C=FQ,∴∠FQC=∠FCQ=45°,∴∠FQC=∠OBD,∵QD⊥x軸,y軸⊥x軸,∴QDSKIPIF1<0y軸,∴∠DQC=∠OBC,∴∠FQC-∠DQC=∠OBD-∠OBC,即∠FQM=∠FBE,又∵∠FMQ=∠FEB=90°,∴△FMQ∽△FEB,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0(不符合題意,舍去),∴FM=DM=2,∴SKIPIF1<0,∴QD=DM+MQ=6,又∵點Q在第三象限,OD=3,∴點Q的坐標(biāo)為(-3,-6).8.(2021·河南·金明中小學(xué)九年級期中)把兩個等腰直角△ABC和△ADE按如圖1所示的位置擺放,將△ADE繞點A按逆時針方向旋轉(zhuǎn),如圖2,連接SKIPIF1<0,SKIPIF1<0,設(shè)旋轉(zhuǎn)角為SKIPIF1<0(SKIPIF1<0).(1)如圖1,SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系是___________,SKIPIF1<0與SKIPIF1<0的位置關(guān)系是___________;(2)如圖2,(1)中SKIPIF1<0和SKIPIF1<0的數(shù)量關(guān)系和位置關(guān)系是否仍然成立,若成立,請證明;若不成立請說明理由.(3)如圖3,當(dāng)點D在線段SKIPIF1<0上時,SKIPIF1<0___________.(4)當(dāng)旋轉(zhuǎn)角SKIPIF1<0__________時,SKIPIF1<0的面積最大.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)成立,見解析;(3)SKIPIF1<0;(4)SKIPIF1<0或SKIPIF1<0【詳解】解:(1)如圖:SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系是相等,理由如下:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0與SKIPIF1<0的位置關(guān)系是垂直,理由如下:SKIPIF1<0,又SKIPIF1<0點SKIPIF1<0分別在SKIPIF1<0上,SKIPIF1<0;(2)成立:理由分別如下:如圖:根據(jù)旋轉(zhuǎn)的性質(zhì)可得:SKIPIF1<0,∴△ABD≌△ACE,SKIPIF1<0,作SKIPIF1<0的延長線交SKIPIF1<0于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,如下圖:由SKIPIF1<0可知,SKIPIF1<0,SKIPIF1<0,∴△AGB∽△FGC,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;(3)當(dāng)點SKIPIF1<0在線段SKIPIF1<0上時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(4)由題意知,點SKIPIF1<0的軌跡在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,在SKIPIF1<0中,當(dāng)SKIPIF1<0為底時,點SKIPIF1<0到SKIPIF1<0的距離最大時,SKIPIF1<0的面積最大,故如圖所示,當(dāng)SKIPIF1<0時,SKIPIF1<0的面積最大,SKIPIF1<0旋轉(zhuǎn)角為SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.9.(2021·北京·景山學(xué)校九年級期中)在△ABC中,AB=2SKIPIF1<0,CD⊥AB于點D,CD=SKIPIF1<0.(1)如圖1,當(dāng)點D是線段AB中點時,①AC的長為;②延長AC至點E,使得CE=AC,此時CE與CB的數(shù)量關(guān)系為,∠BCE與∠A的數(shù)量關(guān)系為.(2)如圖2,當(dāng)點D不是線段AB的中點時,畫∠BCE(點E與點D在直線BC的異側(cè)),使∠BCE=2∠A,CE=CB,連接AE.①按要求補全圖形;②求AE的長.【答案】(1)①SKIPIF1<0,②SKIPIF1<0,SKIPIF1<0;(2)①作圖見解析部分,②SKIPIF1<0【詳解】解:(1)①如圖1中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.②連接SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0,SKIPIF1<0.(2)①圖形如圖2所示:②如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公交車輛消殺制度規(guī)范
- 社會規(guī)范與社會制度
- 醫(yī)生值班制度跟規(guī)范
- 規(guī)范用語規(guī)章制度
- 規(guī)范寵物管理制度
- 進行制度規(guī)范
- 鮮花擺放制度規(guī)范
- 閥門巡檢制度規(guī)范
- 食材防盜制度規(guī)范
- 診所叫號制度規(guī)范
- 2025嵐圖汽車社會招聘(公共基礎(chǔ)知識)測試題附答案
- 2025-2026小學(xué)嶺南版(2024)美術(shù)二年級上冊教學(xué)設(shè)計(附目錄)
- 2025福建德化閩投抽水蓄能有限公司招聘15人模擬試卷附答案
- 微生物檢驗標(biāo)準操作規(guī)范
- 藝術(shù)學(xué)概論共12章
- 2024年版中國頭頸部動脈夾層診治指南課件
- 2025年支部書記講黨課
- 2025年國考科技部英文面試題庫及答案
- 2026年AI輔助教學(xué)設(shè)計工具應(yīng)用指南與課程優(yōu)化技巧
- 中國對外貿(mào)易中心集團有限公司招聘筆試真題2024
- 肺栓塞講解護理
評論
0/150
提交評論