音樂中的數(shù)學之美_第1頁
音樂中的數(shù)學之美_第2頁
音樂中的數(shù)學之美_第3頁
音樂中的數(shù)學之美_第4頁
音樂中的數(shù)學之美_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

音樂中的數(shù)學之美第一頁,共二十三頁,編輯于2023年,星期四目錄音樂與數(shù)學結(jié)合的起源樂理中的數(shù)學規(guī)律

樂曲結(jié)構(gòu)與黃金分割和聲的傅立葉分析

樂器中的數(shù)學奧妙

第二頁,共二十三頁,編輯于2023年,星期四音樂與數(shù)學結(jié)合的起源

最早將音樂與數(shù)學聯(lián)系起來的研究要追溯至公元前六世紀的畢達哥拉斯學派,他們用比例把二者有機結(jié)合起來。

樂聲的協(xié)調(diào)與所聯(lián)系的整數(shù)之間有著密切的關(guān)系,撥動一根弦發(fā)出的聲音取決于繃緊的弦的長度

協(xié)和音由長度與原弦長的比為整數(shù)比的弦給出被撥動弦的每一種和諧的結(jié)合,都能表示為整數(shù)比,由增大成整數(shù)比的弦的長度,能夠產(chǎn)生全部的音階。

第三頁,共二十三頁,編輯于2023年,星期四音樂與數(shù)學結(jié)合的起源CBAGFEDC2

.第四頁,共二十三頁,編輯于2023年,星期四音樂與數(shù)學結(jié)合的起源

五度相生律也是畢達哥拉斯的首創(chuàng),故又名畢達哥拉斯律

基礎(chǔ)音:發(fā)音體整體振動產(chǎn)生的最低的音是基礎(chǔ)音,是由一根弦或空氣柱整體振動時產(chǎn)生的泛音:以基礎(chǔ)音為標準,其余1/2、1/3、1/4等各部分也是同時振動,是泛音。泛音的組合決定了特定的音色,并能使人明確地感到基音的響度。樂器和自然界里所有的音都有泛音。

第五頁,共二十三頁,編輯于2023年,星期四音樂與數(shù)學結(jié)合的起源

根據(jù)第一、二泛音間頻率比為2:3的關(guān)系進行音的繁衍,以此為純五度,進行一系列的五度相生,從而得到調(diào)中諸音。

純律取泛音列中第一、二泛音之間的純五度以及第三、四泛音間的大三度這兩種音程為繁衍新音的要素,由頻率比為4:5:6的幾個大三和弦確定諸音高。第六頁,共二十三頁,編輯于2023年,星期四

純律的實際應用及樂譜記載在六世紀由我國梁代丘明傳譜的《碣石調(diào)幽蘭》。直至十六世紀我國在數(shù)學運算上有所突破,在算盤上用開兩次平方和一次立方的方法求出了十二次方根,這實際就是一百多年后由德國人沃克梅斯特提出的十二平均律,其頻率由等比數(shù)列通項公式確定,公比為1.05946,是2開12次方的算數(shù)根。音樂與數(shù)學結(jié)合的起源第七頁,共二十三頁,編輯于2023年,星期四樂理中的數(shù)學規(guī)律

音程轉(zhuǎn)位

音程:兩個音之間在音高上的關(guān)系

單音程:八度以內(nèi)的音程

音程轉(zhuǎn)位:將音程的冠音和根音相互顛倒位置

第八頁,共二十三頁,編輯于2023年,星期四樂理中的數(shù)學規(guī)律

音程轉(zhuǎn)位

對單音程而言,原音程及其轉(zhuǎn)位音程的度數(shù)之和為9。在音符方面,小于全音符的諸音符由除法確定,如二分音符為全音符的,四分音符為全音符的。

拍子是拍的分組,如拍子是以全音符的為1拍,每小節(jié)有3拍,即,而拍子可認為以全音符的為一拍,每小節(jié)有6拍,即。

??第九頁,共二十三頁,編輯于2023年,星期四樂曲結(jié)構(gòu)與黃金分割對稱在數(shù)學上就是1:1,由上下句構(gòu)成的樂段,由起承轉(zhuǎn)合四部分構(gòu)成的作品,由四個樂章構(gòu)成的交響曲,都體現(xiàn)了造型的對稱美

作曲黃金分割把線段L分成兩段,使其中較長段x為全段與較短段(L-x)的比例中項,即滿足等式L:x=x:(L-x).x=0.618034…倍L

第十頁,共二十三頁,編輯于2023年,星期四第十一頁,共二十三頁,編輯于2023年,星期四樂曲結(jié)構(gòu)與黃金分割

巴托克的頂峰之作《弦樂、打擊樂與鋼片琴的音樂》

第十二頁,共二十三頁,編輯于2023年,星期四樂譜結(jié)構(gòu)第十三頁,共二十三頁,編輯于2023年,星期四這部作品第三樂章89小節(jié)B34小節(jié)A21小節(jié)A34小節(jié)一21小節(jié)二13小節(jié)二8小節(jié)一13小節(jié)二21小節(jié)一13小節(jié)高潮55小節(jié)34:5513:2121:348:13黃金分割第十四頁,共二十三頁,編輯于2023年,星期四

8、13、21、34、55、89等小節(jié)數(shù)數(shù)字本身,則均含于黃金分割的另一種形式——斐波那契數(shù)列(即1,1,2,3,5,8,13,21,34,55,89,144等,且從第三項起每項均為前兩項之和)。這個數(shù)列前兩項之比1:1反映對稱關(guān)系,而自第三項起,每相鄰兩項之比如2:3、3:5、5:8、8:13等均近似反映黃金分割的比例關(guān)系,且愈往后精確度愈高。由此可認為,上述樂曲的結(jié)構(gòu)明顯受斐波那契數(shù)列的制約。第十五頁,共二十三頁,編輯于2023年,星期四和聲的傅立葉分析

一個音叉所發(fā)出的聲音,其圖像就是一個正弦函數(shù),如。任何樂聲的圖像都是周期性的圖像,它有固定的音高和頻率。而傅立葉定理指出,任何一個周期函數(shù)都可以表示為三角級數(shù)的形式,如任何一個周期函數(shù)都可表示為

其中頻率最低的一項為基本音,其余的為泛音。由公式知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波。

第十六頁,共二十三頁,編輯于2023年,星期四和聲的傅立葉分析

根據(jù)傅立葉定理,每個樂音都可以分解成一次諧波與一系列整數(shù)倍頻率諧波的疊加。假設(shè)do的頻率是,那么它可以分解成頻率為,,,,……的諧波的疊加,即;同理,高音do的頻率是,同樣可以分解為頻率為,,,,……的諧波的疊加,即。這兩列諧波的頻率有一半是相同的,所以do和高音do是最和諧的。第十七頁,共二十三頁,編輯于2023年,星期四傅立葉還發(fā)現(xiàn)每種聲音都有三種品質(zhì):與曲線的頻率有關(guān)與曲線的振幅有關(guān)與周期函數(shù)的形狀有關(guān)音調(diào)音量音色第十八頁,共二十三頁,編輯于2023年,星期四樂器中的數(shù)學奧妙

能與某音發(fā)生共鳴的空氣柱長度為該音波波長的、、1、2等倍。低音樂器發(fā)音低,聲波長,所以要求共鳴箱有較大體積;高音樂器則反之,發(fā)音高,聲波短,所以共鳴箱需較小體積。

由于一件樂器可以發(fā)出多個樂音,所以又要求其形狀復雜,以利于在各個不同方位上形成不同長度的共鳴空氣柱,適合于不同高度音響的需要。如中央C音頻率為261.63Hz,波長1.3米,波長的是0.325米,為保證該音共鳴,則共鳴箱的內(nèi)空至少有一個方位為0.325米(或其2、4、8等倍數(shù))。音越低,波長越大,跨越障礙的本領(lǐng)也越強,再加上頻率低,能量損耗小的特點,決定了低音的傳遠性。

第十九頁,共二十三頁,編輯于2023年,星期四樂器中的數(shù)學奧妙

樂器之王——鋼琴的鍵盤,其琴鍵的音程恰好與斐波那契數(shù)列有關(guān)。在鋼琴的鍵盤上,從一個C鍵到下一個C鍵就是音樂中的一個八度音程,其中共包括13個鍵,分別是8個白鍵和5個黑鍵,而5個黑鍵分成2組,一組有2個黑鍵,一組有3個黑鍵。2、3、5、8、13恰好就是斐波那契數(shù)列中的前幾個數(shù)。第二十頁,共二十三頁,編輯于2023年,星期四

音樂是心靈的算術(shù)練習。

——萊布尼茨音樂是由數(shù)規(guī)定的運動。

——奧古斯丁第二十一頁,共二十三頁,編輯于2023年,星期四

音樂中出現(xiàn)數(shù)學與數(shù)學中存在音樂并非偶然,而是音樂與數(shù)學融合一體的完美體現(xiàn)。音樂可以抒發(fā)人們的情感,是對人們自己內(nèi)心世界的反應

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論