版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
NBERWORKINGPAPERSERIES
DYNAMICPROGRAMMINGONAQUANTUMANNEALER:SOLVINGTHERBCMODEL
JesúsFernández-Villaverde
IsaiahJ.Hull
WorkingPaper31326
/papers/w31326
NATIONALBUREAUOFECONOMICRESEARCH
1050MassachusettsAvenue
Cambridge,MA02138
June2023
Duringpartoftheproject,IsaiahHullwasaffiliatedwithandhadafinancialinterestinCogniFrame,Inc.,whichisapartnerofD-WaveSystems,theproducerofthequantumannealersusedinthepaper.TheauthorsdidnotreceiveanysupportorcomputetimefromD-Wavethroughthispartnership.AllaccesstoD-Wave'squantumannealerswasprovidedthroughastandarddeveloperagreement.TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.
NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.
?2023byJesúsFernández-VillaverdeandIsaiahJ.Hull.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including?notice,isgiventothesource.
DynamicProgrammingonaQuantumAnnealer:SolvingtheRBCModel
JesúsFernández-VillaverdeandIsaiahJ.Hull
NBERWorkingPaperNo.31326
June2023
JELNo.C63,C78,E37
ABSTRACT
Weintroduceanovelapproachtosolvingdynamicprogrammingproblems,suchasthoseinmanyeconomicmodels,onaquantumannealer,aspecializeddevicethatperformscombinatorialoptimization.QuantumannealersattempttosolveanNP-hardproblembystartinginaquantumsuperpositionofallstatesandgeneratingcandidateglobalsolutionsinmilliseconds,irrespectiveofproblemsize.Usingexistingquantumhardware,weachieveanorder-of-magnitudespeed-upinsolvingtherealbusinesscyclemodeloverbenchmarksintheliterature.Wealsoprovideadetailedintroductiontoquantumannealinganddiscussitspotentialuseformorechallengingeconomicproblems.
JesúsFernández-Villaverde
DepartmentofEconomics
UniversityofPennsylvania
TheRonaldO.PerelmanCenter
forPoliticalScienceandEconomics
133South36thStreetSuite150
Philadelphia,PA19104
andCEPR
andalsoNBER
jesusfv@
IsaiahJ.Hull
DepartmentofFinance,
BINorwegianBusinessSchool
Nydalsveien37,0484Oslo,
Norway
hull.isaiah@
2
1Introduction
Weintroduceanewapproachtosolvingdynamicprogrammingproblems,suchasthosethatappearinmanyeconomicmodels,onaquantumannealer(QA).Thisspecializedquantumde-viceperformscombinatorialoptimizationusingaphysicalprocess.AQAembedstheproblem’sparametersintoaquantumsystemthatevolvesto?nditslowestenergycon?guration.Thisisequivalentto?ndingthevaluesofstatevariablesthatgloballyminimizealossfunction(
Farhi
etal.
,
2000).QAsattempttosolveaproblemthatisNP-hardforaclassicalcomputerbystart
-inginaquantumsuperpositionofallstatesandreturningcandidatesolutionsinmilliseconds,
irrespectiveoftheproblemsize(
Venegas-Andracaetal.,
2018)
.1
Ourpapermakesfourcontributions:
1.Thedevelopmentofanewsolutionmethodforsolvingdynamicprogrammingproblemsonquantumhardware.
2.Theimplementationandexecutionofthesolutionmethodonexistingquantumhardware,ratherthanonaclassicalsimulator.
3.Thenoveluseofstate-of-the-artquantumannealingtechniques,includingreverseandinhomogeneousannealing.
4.ShowingthebroadapplicabilityofoursolutionmethodtoiterativeproblemsthatcouldnototherwisebesolvedonQAswithouthybridizingtheproblemintoclassicalandquan-tumcomponents.
Moreconcretely,wetacklethelimitationsofQAs,whicharenotdesignedtosolvethedynamicprogrammingproblemsatthecoreofmanyeconomicmodels.Inparticular,QAsdonotnaturallyallowforiterationovertimeoracrossmultipleobjectivefunctionsandsu?erfromthequantum-to-classicalbottleneck,whichseverelylimitshowmuchclassicalinformationcanbereadoutastheproblem’ssolution.Ourapproachovercomestheselimitationsandcanbeusedtorecoverpolicyandvaluefunctionsforproblemsinmacroeconomics,industrialorganization,gametheory,andlaboreconomics.
Toevaluateourapproach,wesolvetherealbusinesscycle(RBC)modelonaQAandcompareitsperformancetothebenchmarkresultsin
AruobaandFern′andez-Villaverde
(2015)
(hereafter,
AFV
).SolvingtheRBCmodelalsoallowsustodemonstratehowtoformulateawell-knowneconomicmodelinawaythatcanbesolvedonaQA.Evenwiththelimitationsofexistingquantumtechnology,wecansolvetheRBCmodelonaQAin3%ofthecomputationtimeoftheVFIsolutionusingC++asin
AFV
or0.66%ofthecomputationtimeofthecombinatorial
1Weusetheterm“classical”and“classically”toindicatethatsomethingisnotquantum.
3
algorithmthatweproposefortheQAbutrunonaclassicalcomputer.Thus,wedemonstratetheenormouspotentialofquantumhardwareforeconomists.
Ourapproachdi?ersfromtheexistingliteratureonquantumdynamicprogramminginthreekeyaspects.First,weuseaQAratherthanauniversalquantumcomputer(UQC).
2
WhileUQCsallowfortheproofofreductionsincomputationalcomplexity,theyarenotsu?cientlymaturetoimplementdynamicprogrammingalgorithmsthato?eraquantumspeed-upfornon-trivialproblems.PriorworkondynamicprogrammingonUQCshasfocused,instead,onthetheoreticaldemonstrationofquantumspeed-upsandonproof-of-principledemonstrationsfortrivialproblems.
3
Incontrast,ourfocusonQAsallowsustosolveastandardRBCmodelonthecurrentvintageofquantumhardwareratherthansimulatingnot-yet-developedquantumhardwareonaclassicalcomputer.
Second,wefocusonproblemsofinteresttoeconomistsandexplorewhatisachievablegivenalreadyexistingmachines.Workondynamicprogrammingusingquantumdeviceshascenteredalmostexclusivelyonproblemsinphysicsandcomputersciencethathavenaturallyparsimonioussolutions.Incontrast,economistsaretypicallyconcernedwithrecoveringpolicyorvaluefunctionsthatliveinhigh-dimensionalhypercubes.Thisisanon-trivialdi?erencesincethequantum-to-classicalbottleneckseverelylimitshowmuchdatacanbereadoutofaquantumdevice.Forinstance,aQAwithNqubitswillstartinanexponentiallylargequantumsuperpositionstateofdimension2N,butwilleventuallycollapseintoaclassicalstatethatcontainsonlyNclassicalbitsofinformation.Thus,?ndingawaytoencodethesolutioninNbitsisafundamentalchallengefordynamicprogrammingproblemsineconomics,whileitisusuallynotaprimaryconcerninphysicsandcomputerscience.Inpart,weovercomethisencodingproblembyusingtheparametricdynamicprogrammingmethodintroducedin
Benitez-Silvaetal.
(2000)toreducethespacecomplexityofthesolution
.
Third,weshowhowtoconstructiterativealgorithmsthatcanbeimplementedonQAs,whichnootherworkhasaccomplishedtothebestofourknowledge.Afundamentalchallengeofdynamicprogrammingisthatsolutionmethodsoftenrequireiteration,sometimesoveralter-natingobjectivefunctions.QAsarenotprogrammableinthewaythatclassicalcomputersorUQCsareprogrammable.Thatis,theycanonlyembedaprobleminstanceandthenperformannealingwithalimitedsetofparameters.Ourapproachaddressestheproblemofhowtoimplementiterationsbymakinguseoftwostate-of-the-artfeaturesofQAs:reverseandinho-mogeneousannealing.Thesetwofeatureswidentheapplicabilityofourworktoanyiterative
2Section
2
willexplaininmoredetailthedi?erencebetweenQAsandUQCs.Su?ceittosayherethatUQCsaremorechallengingtoconstructthanQAs,whichiswhytheirdevelopmenthaslagged.
3EvenonUQCs,littletheoreticalprogresshadbeenmadebefore
Ambainisetal.
(2019),whousedthe
unstructuredquantumsearchalgorithmin
Grover
(1996),coupledwiththecomputationofapartialdynamic
programmingtable,toachieveaquadraticspeed-upforproblemsthatinvolvetheselectionofasubsetofelements.
4
algorithm,whetherornotitisrelatedtodynamicprogramming.
Therestofthepaperisstructuredasfollows.Section
2
givesanoverviewofquantumannealing.Section
3
introducesthebenchmarkRBCmodelweuseasatestbed.InSection
4
,weexplainhowtotranslatethemodelintoaformthatissolvableonaQA.Section
5
introduceshybridandquantumalgorithmsforsolvingthemodelandcomparestheresultstothebenchmarksin
AFV
.Section
6
concludeswithadiscussionoftheprospectsofquantumannealingineconomics.AnOnlineAppendixaddsfurtherdetails.
2QuantumAnnealing
Therearetwoprimarymodelsofquantumcomputing:universalquantumcomputingandquan-tumannealing.Universalquantumcomputers(UQCs)employthe“gate-and-circuit”model,inwhichquantumoperationscalledgatesareappliedtoquantumbits(qubits)toenablearbitrarycomputations.Thesegatesmustadheretotheprinciplesofquantumphysics,sincetheyareperforminganoperationonaquantumsystem.Quantumcircuitsconsistofgatesequencesthatimplementasubroutinewithinaquantumsystem.
UQCso?ertheoreticalreductionsintimeandspacecomplexityforvariousalgorithmsusedincomputationaleconomicsandeconometrics(
Hulletal.,
2020
).Forinstance,
Ambainisetal.
(2019)and
Glosetal.
(2021)provetheoreticalquantumspeed-upsforseveralclassesofdynamic
programmingproblem,includingthetravelingsalespersonandvertexorderingproblems.Ex-perimentalevidencealsodemonstratesthatUQCsarecapableofachievingaspeed-upoverclassicalcomputersforcertainproblemclasses(
Aruteetal.,
2019
)
.4
Unfortunately,UCQsaretechnicallydemandingtoconstruct,andtheirdevelopmenthaslaggedbehindspecializedquantumdevices,suchasQAs.
Incontrast,QAsdonoto?ertheoreticallyprovablereductionsincomputationalcomplexityandcannotbeprogrammedtoexecutearbitraryalgorithms.Instead,QAscanonlyperformcombinatorialoptimization.Thisseeminglyseverelimitationhas,however,enabledconsider-ablyfasterexperimentalprogress.Atpresent,QAshaveroughly50timesasmanyqubitsasUQCs
.5
Intheremainderofthissection,weintroducetheconceptofquantumannealing,discusstheproblemsitcansolve,explainitslimitations,andidentifyproblemsineconomicswhereit
mightbeapplied.Westartwithabriefreviewofcombinatorialoptimization.
4Aruteetal.
(2019
)initiallyclaimedtoachieve“quantumsupremacy,”asde?nedin
Preskill
(2012),by
performingacomputationin200secondsthatwouldarguablytake10,000yearsontheworld’sfastestclassicalsupercomputer;however,thisclaimhassincebeendisputedandappearstohaveunderstatedtheperformanceofclassicalsupercomputers.
5ThelargestUQCsarecurrentlyproducedbyIBM.ItsEagler1quantumprocessorhas127qubits.IBMhasalsorecentlyintroducedanexploratoryOspreyr1processorwith433qubits.Incontrast,Advantage,theQAproducedbyD-WaveSystemsthatweuseforourcomputationsinthispaper,has5616qubits.
5
2.1CombinatorialOptimization
Quantumannealingisaheuristicmethodforsolvingcombinatorialoptimizationproblemsthatmayprovideasubstantialcomputationaladvantageoverclassicalsolutionmethodsforspeci?ccases(
Zintchenkoetal.,
2015
).Forourdiscussion,weadoptaslightlymodi?edversionofthede?nitionofacombinatorialoptimizationproblemgivenin
Venegas-Andracaetal.
(2018)
.
De?nition1(CombinatorialOptimizationProblem).LetEbea?nitesetwithcardinality|E|=n,PEthepowersetofE(hence|PE|=2n),andCalossfunctionwhereC:PE一R.Thegeneralsetupofacombinatorialoptimizationproblemisto?ndanelement此EPEsuchthatC(P)=minpiePE{C(此i)}.
Ingametheoryandmechanismdesign,problemsinvolvingtheallocationofdiscreteobjectsoftenhaveanaturalcombinatorialformthat?tsthede?nitionaboveandisconducivetousingaQA.Problemsthatinvolve?nancialnetworksalsoalignwiththisde?nitionandcanbesolvedonaQA,asshowninproof-of-principleexercisesby
Or′usetal.
(2019a
,b
).
Ourfocuswillbeonproblemsineconomicsthatdonotnaturally?tthisde?nitionbutarecommonlyreformulatedascombinatorialproblemstofacilitategridsearchorvaluefunctioniteration.Asthe?rstexample,considera?rmthatminimizesacostfunction,C,bychoosinginputs,LandK,giventechnologyyC=Y(L,K).Iftheproblemdoesnotpermitananalyticalsolution,acommonstrategyistosearchfortheminimumofCovertheCartesianproductof
discretegrids,whereKE{K0,K1,...,K*1}andLE{L0,L1,...,L*1}.Asolutiontothe
problemisapairoffunctions,KC(w,r,y)andLC(w,r,y),whichyieldoptimalKandLchoicesgivenfactorprices(w,r)andthetargetlevelofoutputy.
Asasecondexample,considertheproblemofanin?nitelylivedhouseholdthatmaximizesutilityfromconsumption,subjecttoabudgetconstraint.Thisproblemisoftenwrittenasadynamicprogramandsolvedusingvaluefunctioniteration.Thesolutionisadiscretelook-uptableapproximationoftheoptimalvaluefunctionorpolicyruleforcapitalandconsumption. Whilethesetwoexamplescan,inprinciple,besolvedonaQAoncewehavereformu-latedthemascombinatorialproblems,thelimitationsofquantumcomputerswillmakethisreformulationchallenging.Theprimarydi?culty,whichwediscussinSubsection
2.5
,isthequantum-to-classicalbottleneck,whichlimitstheamountofinformationthatcanbereadoutofaquantumcomputer,includingaQA.Thecomputationalcomplexityofsuchproblemsalsodi?ersfromthatofmorestandardcombinatorialoptimizationproblems,whichwediscussin
Subsection
2.4
.
6
2.2AdiabaticQuantumComputing
Quantumannealingcanbedescribedasaheuristicor?nitetemperatureimplementationofadiabaticquantumcomputing(
Venegas-Andracaetal.,
2018;
Shinetal.
,
2014),anditsvalue
asanoptimizationalgorithmisjusti?edthroughthequantumadiabatictheorem(
Messiah,
1958
;
AmbainisandRegev,
2004).Toexplaintheseideas,letusintroducetheidealizedconcept
ofadiabaticquantumcomputing,whichwewilltreatasthebest-casescenarioforquantumannealingthatisunlikelytobeachievedinpractice.
AmbainisandRegev
(2004)provideaninformalde?nitionofthequantumadiabatictheorem
.AHamiltonianexpressesthetotallevelofenergyinaquantumsystem:
...ifwetakeaquantumsystemwhoseHamiltonianslowlychangesfromN1toN2,then,undercertainconditionsonN1andN2,theground(lowestenergy)stateofN1getstransformedtothegroundstateofN2.
Farhietal.
(2000)showedthatthepreviousfactcanbeusedtoconstructanalternative
modelofquantumcomputingthatexploitsadiabaticevolutiontoidentifyglobalminima.
Moreconcretely,onebuildsaquantumstatethatinterpolatesbetweentwoHamiltonians:1)atrivialHamiltonian,N0;and2)theproblemHamiltonian,Np.ThesystemisinitializedasN0,buttransitionsovertimetoNp,followingtheadiabaticevolution:
N(t)=╱1-N0+Np.
TheinitialHamiltonian,N0,isspeci?edtobetrivial,suchthatwecanidentifythelowestlevelofenergy(thegroundstate)analytically.Incomparison,Npencodesaminimizationproblemofinterest,wheretheenergylevelinthesystemcorrespondstothelossassociatedwithastate.Thus,N0andNpcanbeinterpretedaslossfunctionswithgroundstatesthatcorrespondtoglobalminima.
Returningtothedescriptionofthequantumadiabatictheorem,evolvingfromN0toNpsu?cientlyslowlywillensurethatthequantumsystemremainsintheglobalminimum(groundstate)inallperiods.Thus,inprinciple,thequantumadiabatictheoremtellsushowto?ndtheglobalminimumofacombinatorialoptimizationproblem.
Adiabaticquantumcomputingalsoallowsustocomputea“speedlimit”forthetransitionbetweenN0andNptoensurethequantumsystemremainsinitsgroundstate.Unfortunately,formanyproblemtypesofsizeN,thespeedlimittakestheformT=p[exp(γNν)],whereγandνarepositiveparameters(
Bapstetal.,
2013
;
Lucas
,
2014)
.
Hence,adiabaticquantumcomputingmayrequireexponentialtimetotransitionbetweenN0andNpwhileremaininginthegroundstate.Consequently,itisunlikelythatQAswill
7
solvehardglobaloptimizationproblemsinpolynomialtime.However,γandνcouldbecon-siderablysmallerthantheircorrespondingvaluesfortheclassicalproblem,enablingustosolveexponentiallyhardproblemswithlargerinputsizes.WewillrevisitthisideainSubsection
2.4
.
2.3ProblemEncoding
QuantumannealinginvolvestheevolutionofatrivialHamiltonian,N0,con?guredinitsgroundstate,intoonethatencodestheproblemofinterest,Np.Ifthetransitionhappensadiabatically(veryslowly),Npwillalsobeinitsgroundstate.Wecanthenmeasurethequantumsystemandrecovertheglobalminimum.
QAsdonotrequireustospecifyN0,sinceanytrivialHamiltonianwithaknowngroundstate(globalminimum)willwork
.6
However,onemustspecifyNp,anon-trivialtaskevenforsimpleproblems.Thisprocessisreferredtoas“problemencoding,”sinceitencodestheinformationaboutaminimizationprobleminthestateofaquantumsystem.Next,wewilldiscusshowsuchencodingsareconstructed,startingwiththetypesofproblemswecanfeasiblyencode.
2.3.1Conversiontoabinaryquadraticmodel
Subsection
2.1
highlightedthatanoptimizationproblemmustbecombinatorialtobesolvableonaQA.ThisisbecauseQAsmustencodethestructureofaminimizationproblemasabinaryquadraticmodel(BQM).ThiscanbedoneusingtheIsingorthequadraticunconstrainedbinaryoptimization(QUBO)model.TheIsingmodelallowsustointroducethemainconceptstransparentlyandhasanintuitiveinterpretation.TheQUBOwillbemoreconvenientand,thus,ourpreferredchoicefortherestofthepaper.TheQUBOmodelalsoabstractsfromanyphysicalsystemand,thus,doesnotrequireknowledgeofphysics.
TheIsingmodel.TheIsingmodeldescribesasystemofatomicspins.Forourpurposes,itwillsu?cetounderstandthateachspinisaphysicalsystemthatcanbecon?guredinoneoftwostates,whichwewillrepresentas+1and-1.WecanthinkofaspinascorrespondingtoaterminalqubitstateinaQA.
WedenoteavectorofNspinsass=[s0,s1,...,sN*1}.Eachsihasabias,hi,andeachpairofspins,(si,sj),hasacoupling,Ji,j,wherehi,Ji,jBR.Thespinsandcouplingscanbeusedtode?neanIsingmodel:
N*1N*1N*1
N(s)=↓hisi+↓↓Ji,jsisj.
i=0i=0j=0
6Inpractice,anequalsuperpositionofallstatesistypicallyused.Additionally,“reverse”annealingallowsustospecifyaninitialclassicalstate,whichcanbeusedtore?nesolutionsbyperformingalocalsearch.
8
s2
RecallthatNencodesalossfunctionasthetotalenergylevelinaphysicalsystem.Thus,aterminalsvectorthatimpliesahigherNalsoimpliesahigherloss.Thebiasesandcouplingsarefeaturesofouroptimizationproblem,whichweencodeinthesystem.Theannealingprocessidenti?esanoptimalcon?gurationofspinstominimizetheenergylevel.
s0
s1
N(s)
1
-1
-1
-1.0
2
-1
1
0.0
3
1
-1
1.6
4
1
1
-0.6
Table1:Spincon?gurationsandenergylevels.
Forconcreteness,consideraproblemwhereN=2,h=[0.5,-0.3},andJ=[-0.8}.Table
1
enumeratesallpossibleterminalsvectorsandcomputesthetotalenergy(loss)inthesystem.Combination1,wheres=[-1,-1},isaglobalminimumforthisproblem,sinceN(-1,-1)islowerthanforanyothercombinationofspins.WhilethisistrivialtoprovefortheN=2case,theclassicaltimecomplexityofenumeratingallpossiblecombinationsforanarbitrarysoflengthNisp(2N).
s1
s0
s3
Figure1:AgraphicalrepresentationofabinaryquadraticmodelfortheN=4caseandwithcouplingsbetween
thepairs:[(s0,s1),(s0,s3),(s1,s2),(s1,s3)}.
BQMs,includingtheIsingmodel,haveanaturalgraphicalrepresentation.ConsiderthecaseforagraphofsizeN=4withnon-zerocouplingsbetweenthepairs(s0,s1),(s0,s3),(s1,s2),and(s1,s3).Abstractingfrombiasesandcouplingmagnitudes,wecanrepresentthismodelwithagraph,G,speci?edbyverticesandedges,(V,E).Figure
1
visualizesthegraph,whereV=[s0,s1,s2,s3}andE=[(s0,s1),(s0,s3),(s1,s2),(s1,s3)}.
AswediscussinSection
4
,theBQMimpliedbyourproblemmustbemappedtoagraphthatisembeddedinaQA.Whiletheembeddingistypicallyconstructedinaclassicalpre-processingstep–and,thus,isnotapartofthesolution–theproblem’sdi?cultyandtheembedding’s
9
qualitydependonthegraphourproblemimplies(
Lucas,
2014
).Section
4
explicitlyconsiderswhetheraBQM’sgraphissuitableforagivenQAtopology.
Earlier,wepresentedtheclassicalIsingmodeltoenhanceintuition.WedescribedtheHamiltonianasanoperatorthatexpressesthelevelofenergyinasystemasafunctionofitsstateandtheparametersofthesystem,whichcanbecon?guredtoencodeanoptimizationproblem.Inaddition,thereisaversionoftheIsingmodelthatallowsforquantumphenomenaandexpressesthelevelofenergyinthesystem.
Toseethis,westartwiththestandardinitialstateofaQAgivenbytheHamiltonian:
N*1
N0=-↓σ,
i=0
whereσ=I8...8σx8...8I,Iisa2x2identitymatrix,andσxisthePauliXmatrix:
σx=
0
1
1
0
,
wheretheiindicatesthatσXislocatedintheithpositioninthesequenceoftensorproducts:FortheN=2case,forexample,N0wouldbespeci?edas:
(0-1-10)
N0=-(σx8I+I8σx)=|--|.
(0-1-10ì
ThegroundstatecorrespondstotheeigenvectorassociatedwiththeminimumeigenvalueofN0.Inthiscase,thecharacteristicpolynomialoftheexpressionforN0isλ4-4λ=0,yieldingtheeigenvaluesλ=[-2,2,0,0}andeigenvectorsv:
(1)(1)(-1)(0)
v=(||||,,,1
|.
ì
The?rsteigenvector,v0=[1,1,1,1],isassociatedwiththeminimumeigenvalue(λ0=-2)and,thus,correspondstotheglobalsolution.Withasuitablenormalization,thisvectorrepresentsauniformsuperpositionoverallpossiblestates.Wehavetwoqubitsandtwostatesinthiscase,sotherearefourpossibleclassicalcon?gurations.AQAistypicallypreparedinthisposition(butforNqubits),sinceithasatriviallycomputablegroundstate.Performingmeasurement
10
immediatelywouldcollapsethesuperposition,yieldingoneofthefourpossiblestateswithequalprobability.
Duringtheannealingprocess,theHamiltoniancanbeexpressedas:
N=(1-hiσ+Ji,jσσ,(1)
wherethecoe?cientsontheinitialandproblemHamiltonianscorrespondtotheannealing
schedule.Again,weuseσasashorthandforσ=I8...8σz8...8I,whereσzisthePauli
Zmatrix:
σz=l01].
TheHamiltonian(
1
)containstransverse?elds,representedbytheσterms,whichpull
qubitstowardasuperpositionofthe+1and-1states.These?eldsareintensionwiththeσ
termsintheproblemHamiltonian,whichpullqubitstowardaclassicalcomputationalbasisstate
.7
TheQUBOmodel.TheQUBOmodelisstillaBQM,butituses0and1statesratherthanthe+1and-1statesoftheIsingmodel.AQUBOmodelallowsequalityandinequality
constraintsanddoesnotuseaquadraticapproximation
.8
ThestandardformofaQUBOproblemis:
N(x)=Qi,ixi+Qi,jxixj.
ThisHamiltonianformulationemphasizestherelationshipbetweentheIsingmodelandQUBOproblemsinthecontextofquantumannealing.
Noticethatx=[x0,x1,...,xN*1}isavectorofbinaryvariablesthatcantakeonvaluesof0and1.TheproblemstructureisembeddedinQ,anupper-triangularmatrix.WemayrewritetheproblemintermsofQasN(x)=xTQx.
Modelconversion.Convertingtheconstrainedopt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 法制史試題及答案
- 廠級(jí)教育培訓(xùn)試題及答案
- 義烏公務(wù)員考試題及答案
- ABB(中國)招聘面試題及答案
- 骨髓炎的中醫(yī)護(hù)理方法
- 2026飛鶴乳業(yè)(寧夏)生態(tài)牧業(yè)有限公司招聘18人參考題庫必考題
- “夢想靠岸”招商銀行溫州分行2026校園招聘參考題庫附答案
- 中共雅安市委辦公室互聯(lián)網(wǎng)信息中心2025年公開選調(diào)事業(yè)人員的(2人)備考題庫必考題
- 樂山市公安局2025年第四批次警務(wù)輔助人員招聘(40人)參考題庫必考題
- 內(nèi)江師范學(xué)院2025年下半年公開選調(diào)工作人員(2人)備考題庫附答案
- 綜合布線辦公樓布線方案
- 鞍鋼檢驗(yàn)報(bào)告
- 河南省信陽市2023-2024學(xué)年高二上學(xué)期期末教學(xué)質(zhì)量檢測數(shù)學(xué)試題(含答案解析)
- 北師大版七年級(jí)上冊(cè)數(shù)學(xué) 期末復(fù)習(xí)講義
- 2023年初級(jí)經(jīng)濟(jì)師《初級(jí)人力資源專業(yè)知識(shí)與實(shí)務(wù)》歷年真題匯編(共270題)
- 赤峰南臺(tái)子金礦有限公司金礦2022年度礦山地質(zhì)環(huán)境治理計(jì)劃書
- 氣穴現(xiàn)象和液壓沖擊
- 公民健康素養(yǎng)知識(shí)講座課件
- 銷軸連接(-自編)
- GB/T 15623.2-2003液壓傳動(dòng)電調(diào)制液壓控制閥第2部分:三通方向流量控制閥試驗(yàn)方法
- 英語音標(biāo)拼讀練習(xí)
評(píng)論
0/150
提交評(píng)論