版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年河南省林州市林州一中分校高二數(shù)學第一學期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若執(zhí)行如圖所示的程序框圖,則輸出S的值是()A.18 B.78C.6 D.502.袋子中有四個小球,分別寫有“文、明、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“文、明、中、國”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):由此可以估計,恰好第三次就停止的概率為()A. B.C. D.3.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.14.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.5.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列6.在平面直角坐標系xOy中,雙曲線(,)的左、右焦點分別為,,點M是雙曲線右支上一點,,且,則雙曲線的離心率為()A. B.C. D.7.在正三棱錐中,,且,M,N分別為BC,AD的中點,則直線AM和CN夾角的余弦值為()A. B.C. D.8.已知直線與直線平行,則實數(shù)a值為()A.1 B.C.1或 D.9.圓關于直線l:對稱的圓的方程為()A. B.C. D.10.已知銳角的內角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.11.正方體的棱長為2,E,F(xiàn),G分別為,AB,的中點,則直線ED與FG所成角的余弦值為()A. B.C. D.12.已知橢圓的離心率,為橢圓上的一個動點,若定點,則的最大值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.14.直線的一個法向量________.15.如圖,棱長為2的正方體中,E,F(xiàn)分別為棱、的中點,G為面對角線上一個動點,則三棱錐的外接球表面積的最小值為___________.16.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在等比數(shù)列中,是與的等比中項,與的等差中項為6(1)求的通項公式;(2)設,求數(shù)列前項和18.(12分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過點.(1)求雙曲線的方程;(2)已知雙曲線的左右焦點分別為,直線經(jīng)過,傾斜角為與雙曲線交于兩點,求的面積.19.(12分)已知橢圓,離心率分別為左右焦點,橢圓上一點滿足,且的面積為1.(1)求橢圓的標準方程;(2)過點作斜率為的直線交橢圓于兩點.過點且平行于的直線交橢圓于點,證明:為定值.20.(12分)點與定點的距離和它到直線:的距離的比是常數(shù).(1)求動點的軌跡的方程;(2)點在(1)中軌跡上運動軸,為垂足,點滿足,求點軌跡方程.21.(12分)在平面直角坐標系中,已知雙曲線C的焦點為、,實軸長為.(1)求雙曲線C的標準方程;(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,求直線l的方程.22.(10分)已知橢圓C的兩焦點分別為,長軸長為6⑴求橢圓C的標準方程;⑵已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】根據(jù)框圖逐項計算后可得正確的選項.【題目詳解】第一次循環(huán)前,;第二次循環(huán)前,;第三次循環(huán)前,;第四次循環(huán)前,;第五次循環(huán)前,此時滿足條件,循環(huán)結束,輸出S的值是18故選:A2、A【解題分析】利用古典概型的概率公式求解.【題目詳解】因為隨機模擬產(chǎn)生了以下18組隨機數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個,所以由此可以估計,恰好第三次就停止的概率為,故選:A3、C【解題分析】作出可行域,把變形為,平移直線過點時,最大.【題目詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【題目點撥】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.4、C【解題分析】根據(jù)四面體的性質,結合線面垂直的判定定理、球的性質、正弦定理進行求解即可.【題目詳解】由圖設點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設三角形的外接圓圓心為點,則面,有,則,設的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【題目點撥】關鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關鍵.5、D【解題分析】由,化簡得,結合等比數(shù)列、等差數(shù)列的定義可求解.【題目詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.6、A【解題分析】本題考查雙曲線的定義、幾何性質及直角三角形的判定即可解決.【題目詳解】因為,,所以在中,邊上的中線等于的一半,所以.因為,所以可設,,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A7、B【解題分析】由題意可得兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,利用空間向量求解【題目詳解】因為,所以兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標系,如圖所示,因為,所以,因為M,N分別為BC,AD的中點,所以,所以,設直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B8、A【解題分析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【題目詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A9、A【解題分析】首先求出圓的圓心坐標與半徑,再設圓心關于直線對稱的點的坐標為,即可得到方程組,求出、,即可得到圓心坐標,從而求出對稱圓的方程;【題目詳解】解:圓的圓心為,半徑,設圓心關于直線對稱的點的坐標為,則,解得,即圓關于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A10、C【解題分析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結合基本不等式,即可求解.【題目詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當且僅當,即時等號成立,故的最小值為.故選:C11、B【解題分析】建立空間直角坐標系,利用空間向量坐標運算即可求解.【題目詳解】如圖所示建立適當空間直角坐標系,故選:B12、C【解題分析】首先求得橢圓方程,然后確定的最大值即可.【題目詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設橢圓上點的坐標為,則,故:,當時,.本題選擇C選項.【題目點撥】本題主要考查橢圓方程問題,橢圓中的最值問題等知識,意在考查學生的轉化能力和計算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】按題意求得,兩點坐標,以代數(shù)式表達出條件,即可得到關于的關系式,進而解得雙曲線的離心率.【題目詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:14、(答案不唯一)【解題分析】根據(jù)給定直線方程求出其方向向量,再由法向量意義求解作答.【題目詳解】直線的方向向量為,而,所以直線的一個法向量.故答案為:15、【解題分析】以DA,DC,分別為x軸,y軸,z軸建系,則,設,球心,得到外接球半徑關于的函數(shù)關系,求出的最小值,即可得到答案;【題目詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設,球心,,又.聯(lián)立以上兩式,得,所以時,,為最小值,外接球表面積最小值為.故答案為:.16、①.②.##2.4【解題分析】利用直線與平行,結合切線的性質求出切線的方程,即可確定定點坐標,再利用兩條平行線間的距離公式求兩線距離.【題目詳解】由題意,直線斜率,設直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)設出等比數(shù)列的公比,根據(jù)給定條件列出方程求解作答.(2)由(1)的結論求出,再利用分組求和法計算作答.【小問1詳解】設等比數(shù)列公比為,依題意,,即,解得,所以的通項公式【小問2詳解】由(1)知,,.18、(1);(2).【解題分析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據(jù)已知有直線為,由其與雙曲線的位置關系,結合弦長公式、點線距離公式及三角形面積公式求的面積.【題目詳解】(1)設所求雙曲線方程為,代入點得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設,聯(lián)立得,滿足且,,由弦長公式得,點到直線的距離.所以【題目點撥】本題考查了雙曲線,根據(jù)雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關系求原點與交點構成三角形的面積,綜合應用了弦長公式、點線距離公式、三角形面積公式,屬于基礎題.19、(1)(2)證明見解析【解題分析】(1)方法一:根據(jù)離心率以及,可得出,將條件轉化為點在以為直徑的圓上,即為圓與橢圓的交點,將的面積用表示,求出,進而求出橢圓的標準方程;方法二:根據(jù)橢圓的定義,,再根據(jù)勾股定理和直角三角形的面積公式,即可解得,又由離心率求出,則可求出橢圓的標準方程;(2)設出直線的方程,代入橢圓方程,根據(jù)韋達定理表示出,再將直線的方程代入橢圓方程,求出,則為定值.【小問1詳解】方法一:由離心率,得:,所以橢圓上一點,滿足,所以點為圓:與橢圓的交點,聯(lián)立方程組解得所以,解得:,所以橢圓的標準方程為:.方法二:由橢圓定義;,因為,所以,得到:,即,又,得所以橢圓C的標準方程為:;【小問2詳解】設直線AB的方程為:.得設過點且平行于的直線方程:.20、(1);(2)【解題分析】(1)根據(jù)題意用表示出與,再代入,再化簡即可得出答案。(2)設,利用表示出點,再將點代入橢圓,化簡即可得出答案?!绢}目詳解】(1)由題意知,所以化簡得:(2)設,因為,則將代入橢圓得化簡得【題目點撥】本題考查軌跡方程,一般求某點的軌跡方程,只需要設該點為,利用所給條件建立的關系式,化簡即可。屬于基礎題。21、(1)(2).【解題分析】(1)根據(jù)條件,結合雙曲線定義即可求得雙曲線的標準方程.(2)當斜率不存在時,不符合題意;當斜率存在時,設出直線方程,聯(lián)立雙曲線,變形后由中點坐標公式可求得斜率,即可求得直線方程.【題目詳解】(1)根據(jù)題意,焦點在軸上,且,所以,雙曲線的標準方程為C:.(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,當直線斜率不存在時,直線方程為,則由雙曲線對稱性可知線段的中點在軸上,所以不滿足題意;當斜率存在時,設直線方程為,設,則,化簡可得,因為有兩個交點,所以化簡可得恒成立,所以,因為恰好為線段的中點,則,化簡可得,所以直線方程為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026中鐵工程設計咨詢集團有限公司社會招聘7人參考考試試題及答案解析
- 2026年貴州航天職業(yè)技術學院單招綜合素質考試備考題庫含詳細答案解析
- 2026年南昌理工學院單招綜合素質筆試備考題庫含詳細答案解析
- 2026年常州紡織服裝職業(yè)技術學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年江西旅游商貿(mào)職業(yè)學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年長春健康職業(yè)學院高職單招職業(yè)適應性測試備考題庫及答案詳細解析
- 2026年山西青年職業(yè)學院單招綜合素質筆試備考題庫含詳細答案解析
- 2026年安徽國防科技職業(yè)學院單招綜合素質筆試參考題庫含詳細答案解析
- 2026年云南交通運輸職業(yè)學院單招綜合素質筆試備考題庫含詳細答案解析
- 2026年安徽工業(yè)職業(yè)技術學院單招綜合素質筆試模擬試題含詳細答案解析
- 科級后備人員管理辦法
- 2025六下語文部編版學情調研與教學調整計劃
- 2025年《物聯(lián)網(wǎng)工程設計與管理》課程標準
- T-CSTM 00394-2022 船用耐火型氣凝膠復合絕熱制品
- 滬教版6年級上冊數(shù)學提高必刷題(有難度) (解析)
- DBJ50-T-086-2016重慶市城市橋梁工程施工質量驗收規(guī)范
- 固態(tài)電池及固態(tài)電池的制造方法培訓課件
- 川農(nóng)畢業(yè)論文開題報告
- UL1012標準中文版-2018非二類變壓器UL中文版標準
- 出納常用表格大全
- 《頭暈與眩暈診斷》課件
評論
0/150
提交評論